BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26492175)

  • 1. Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina.
    Janicki T; Krupiński M; Długoński J
    Bioresour Technol; 2016 Jan; 200():223-9. PubMed ID: 26492175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecotoxicological Estimation of 4-Cumylphenol, 4-
    Janicki T; Długoński A; Felczak A; Długoński J; Krupiński M
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina.
    Janicki T; Długoński J; Krupiński M
    J Hazard Mater; 2018 Oct; 360():661-669. PubMed ID: 30219529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways.
    Rajendran RK; Lee YW; Chou PH; Huang SL; Kirschner R; Lin CC
    Chemosphere; 2020 Feb; 240():124876. PubMed ID: 31542577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal capacity and pathways of phenolic endocrine disruptors in an estuarine wetland of natural reed bed.
    Yang L; Li Z; Zou L; Gao H
    Chemosphere; 2011 Apr; 83(3):233-9. PubMed ID: 21269659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment, isolation, and biodegradation potential of long-branched chain alkylphenol degrading non-ligninolytic fungi from wastewater.
    Rajendran RK; Lin CC; Huang SL; Kirschner R
    Mar Pollut Bull; 2017 Dec; 125(1-2):416-425. PubMed ID: 28964501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways.
    Rajendran RK; Huang SL; Lin CC; Kirschner R
    Bioresour Technol; 2017 Feb; 226():55-64. PubMed ID: 27987401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway.
    Mtibaà R; Ezzanad A; Aranda E; Pozo C; Ghariani B; Moraga J; Nasri M; Manuel Cantoral J; Garrido C; Mechichi T
    Sci Total Environ; 2020 Mar; 708():135129. PubMed ID: 31806325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450.
    Nykiel-Szymańska J; Stolarek P; Bernat P
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2738-2743. PubMed ID: 29139072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity on crustaceans and endocrine disrupting activity on Saccharomyces cerevisiae of eight alkylphenols.
    Isidori M; Lavorgna M; Nardelli A; Parrella A
    Chemosphere; 2006 Jun; 64(1):135-43. PubMed ID: 16343595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of alkylphenols by white rot fungus Irpex lacteus and its manganese peroxidase.
    Moon DS; Song HG
    Appl Biochem Biotechnol; 2012 Oct; 168(3):542-9. PubMed ID: 22790662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotoxicity of 4-nonylphenol and nonylphenol ethoxylate mixtures by the use of Saccharomyces cerevisiae D7 mutation assay and use of this text to evaluate the efficiency of biodegradation treatments.
    Frassinetti S; Barberio C; Caltavuturo L; Fava F; Di Gioia D
    Ecotoxicol Environ Saf; 2011 Mar; 74(3):253-8. PubMed ID: 21087794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi.
    Cajthaml T; Kresinová Z; Svobodová K; Möder M
    Chemosphere; 2009 May; 75(6):745-50. PubMed ID: 19243809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation.
    Cajthaml T
    Environ Microbiol; 2015 Dec; 17(12):4822-34. PubMed ID: 24650234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters.
    Soares A; Guieysse B; Jefferson B; Cartmell E; Lester JN
    Environ Int; 2008 Oct; 34(7):1033-49. PubMed ID: 18282600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol.
    Asimakopoulos AG; Thomaidis NS; Koupparis MA
    Toxicol Lett; 2012 Apr; 210(2):141-54. PubMed ID: 21888958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Degradation of nonylphenol and short chain nonylphenol polyethoxylates in soil].
    Qiao YS; Zhang J; Yang M; Zhang Y; Xu DY
    Huan Jing Ke Xue; 2008 Apr; 29(4):869-73. PubMed ID: 18637330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of the endocrine disruptors 4-tert-octylphenol and 4-nonylphenol to human serum albumin.
    Xie X; Lü W; Chen X
    J Hazard Mater; 2013 Mar; 248-249():347-54. PubMed ID: 23416871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol.
    Porter AW; Hay AG
    Appl Environ Microbiol; 2007 Nov; 73(22):7373-9. PubMed ID: 17890335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodecontamination of water from bisphenol A using ligninolytic fungi and the modulation role of humic acids.
    Loffredo E; Traversa A; Senesi N
    Ecotoxicol Environ Saf; 2012 May; 79():288-293. PubMed ID: 22305120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.