These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 26492316)
1. Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure. Lee SX; McLachlan GJ; Pyne S Cytometry A; 2016 Jan; 89(1):30-43. PubMed ID: 26492316 [TBL] [Abstract][Full Text] [Related]
2. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678 [TBL] [Abstract][Full Text] [Related]
3. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure. Hsiao C; Liu M; Stanton R; McGee M; Qian Y; Scheuermann RH Cytometry A; 2016 Jan; 89(1):71-88. PubMed ID: 26274018 [TBL] [Abstract][Full Text] [Related]
5. A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects. Dundar M; Akova F; Yerebakan HZ; Rajwa B BMC Bioinformatics; 2014 Sep; 15(1):314. PubMed ID: 25248977 [TBL] [Abstract][Full Text] [Related]
6. Joint modeling and registration of cell populations in cohorts of high-dimensional flow cytometric data. Pyne S; Lee SX; Wang K; Irish J; Tamayo P; Nazaire MD; Duong T; Ng SK; Hafler D; Levy R; Nolan GP; Mesirov J; McLachlan GJ PLoS One; 2014; 9(7):e100334. PubMed ID: 24983991 [TBL] [Abstract][Full Text] [Related]
7. Automated gating of flow cytometry data via robust model-based clustering. Lo K; Brinkman RR; Gottardo R Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272 [TBL] [Abstract][Full Text] [Related]
8. gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data. Tong DL; Ball GR; Pockley AG Cytometry A; 2015 Jul; 87(7):616-23. PubMed ID: 25572884 [TBL] [Abstract][Full Text] [Related]
10. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Finn WG; Carter KM; Raich R; Stoolman LM; Hero AO Cytometry B Clin Cytom; 2009 Jan; 76(1):1-7. PubMed ID: 18642311 [TBL] [Abstract][Full Text] [Related]
12. Statistical file matching of flow cytometry data. Lee G; Finn W; Scott C J Biomed Inform; 2011 Aug; 44(4):663-76. PubMed ID: 21406248 [TBL] [Abstract][Full Text] [Related]
13. A mixture model with random-effects components for clustering correlated gene-expression profiles. Ng SK; McLachlan GJ; Wang K; Ben-Tovim Jones L; Ng SW Bioinformatics; 2006 Jul; 22(14):1745-52. PubMed ID: 16675467 [TBL] [Abstract][Full Text] [Related]
14. Computationally efficient multidimensional analysis of complex flow cytometry data using second order polynomial histograms. Zaunders J; Jing J; Leipold M; Maecker H; Kelleher AD; Koch I Cytometry A; 2016 Jan; 89(1):44-58. PubMed ID: 26097104 [TBL] [Abstract][Full Text] [Related]
15. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation. Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172 [TBL] [Abstract][Full Text] [Related]
16. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples. Azad A; Rajwa B; Pothen A Front Oncol; 2016; 6():188. PubMed ID: 27630823 [TBL] [Abstract][Full Text] [Related]
17. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Van Gassen S; Callebaut B; Van Helden MJ; Lambrecht BN; Demeester P; Dhaene T; Saeys Y Cytometry A; 2015 Jul; 87(7):636-45. PubMed ID: 25573116 [TBL] [Abstract][Full Text] [Related]
18. Automated Assessment of Disease Progression in Acute Myeloid Leukemia by Probabilistic Analysis of Flow Cytometry Data. Rajwa B; Wallace PK; Griffiths EA; Dundar M IEEE Trans Biomed Eng; 2017 May; 64(5):1089-1098. PubMed ID: 27416585 [TBL] [Abstract][Full Text] [Related]
19. A stable iterative method for refining discriminative gene clusters. Xu M; Zhu M; Zhang L BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S18. PubMed ID: 18831783 [TBL] [Abstract][Full Text] [Related]
20. Mixture modeling with pairwise, instance-level class constraints. Zhao Q; Miller DJ Neural Comput; 2005 Nov; 17(11):2482-507. PubMed ID: 16156936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]