These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 26492385)
1. Organometallic Complexes Anchored to Conductive Carbon for Electrocatalytic Oxidation of Methane at Low Temperature. Joglekar M; Nguyen V; Pylypenko S; Ngo C; Li Q; O'Reilly ME; Gray TS; Hubbard WA; Gunnoe TB; Herring AM; Trewyn BG J Am Chem Soc; 2016 Jan; 138(1):116-25. PubMed ID: 26492385 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support. Nsabimana A; Bo X; Zhang Y; Li M; Han C; Guo L J Colloid Interface Sci; 2014 Aug; 428():133-40. PubMed ID: 24910045 [TBL] [Abstract][Full Text] [Related]
3. Development of molecular and solid catalysts for the direct low-temperature oxidation of methane to methanol. Palkovits R; von Malotki C; Baumgarten M; Müllen K; Baltes C; Antonietti M; Kuhn P; Weber J; Thomas A; Schüth F ChemSusChem; 2010 Feb; 3(2):277-82. PubMed ID: 19780100 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Pt anchored on cerium oxide and ordered mesoporous carbon tri-component composite for electrocatalytic oxidation of adrenaline. Meng T; Nsabimana A; Zeng T; Jia H; An S; Wang H; Zhang Y Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110747. PubMed ID: 32204052 [TBL] [Abstract][Full Text] [Related]
5. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. Cui X; Shi J; Chen H; Zhang L; Guo L; Gao J; Li J J Phys Chem B; 2008 Sep; 112(38):12024-31. PubMed ID: 18754636 [TBL] [Abstract][Full Text] [Related]
6. Temperature dependence of oxygen reduction reaction activity at stabilized Pt skin-PtCo alloy/graphitized carbon black catalysts prepared by a modified nanocapsule method. Okaya K; Yano H; Kakinuma K; Watanabe M; Uchida H ACS Appl Mater Interfaces; 2012 Dec; 4(12):6982-91. PubMed ID: 23234364 [TBL] [Abstract][Full Text] [Related]
7. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. Qu L; Liu Y; Baek JB; Dai L ACS Nano; 2010 Mar; 4(3):1321-6. PubMed ID: 20155972 [TBL] [Abstract][Full Text] [Related]
8. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media. Singh B; Murad L; Laffir F; Dickinson C; Dempsey E Nanoscale; 2011 Aug; 3(8):3334-49. PubMed ID: 21717025 [TBL] [Abstract][Full Text] [Related]
9. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
10. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. Du W; Wang Q; Saxner D; Deskins NA; Su D; Krzanowski JE; Frenkel AI; Teng X J Am Chem Soc; 2011 Sep; 133(38):15172-83. PubMed ID: 21812458 [TBL] [Abstract][Full Text] [Related]
11. The oriented growth of tungsten oxide in ordered mesoporous carbon and their electrochemical performance. Wang T; Tang J; Fan X; Zhou J; Xue H; Guo H; He J Nanoscale; 2014 May; 6(10):5359-71. PubMed ID: 24733640 [TBL] [Abstract][Full Text] [Related]
12. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes. Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646 [TBL] [Abstract][Full Text] [Related]
13. Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation. Wang X; Xue H; Yang L; Wang H; Zang P; Qin X; Wang Y; Ma Y; Wu Q; Hu Z Nanotechnology; 2011 Sep; 22(39):395401. PubMed ID: 21891845 [TBL] [Abstract][Full Text] [Related]
14. Fighting Fenton Chemistry: A Highly Active Iron(III) Tetracarbene Complex in Epoxidation Catalysis. Kück JW; Anneser MR; Hofmann B; Pöthig A; Cokoja M; Kühn FE ChemSusChem; 2015 Dec; 8(23):4056-63. PubMed ID: 26580492 [TBL] [Abstract][Full Text] [Related]
15. Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide. Hurtado P; Ordóñez S; Vega A; Díez FV Chemosphere; 2004 May; 55(5):681-9. PubMed ID: 15013673 [TBL] [Abstract][Full Text] [Related]
16. Ordered-mesoporous-carbon-bonded cobalt phthalocyanine: a bioinspired catalytic system for controllable hydrogen peroxide activation. Li N; Lu W; Pei K; Yao Y; Chen W ACS Appl Mater Interfaces; 2014 Apr; 6(8):5869-76. PubMed ID: 24673711 [TBL] [Abstract][Full Text] [Related]
17. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al(2)O(3). Kimmerle B; Baiker A; Grunwaldt JD Phys Chem Chem Phys; 2010 Mar; 12(10):2288-91. PubMed ID: 20449341 [TBL] [Abstract][Full Text] [Related]
18. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells. Kim JR; Kim JY; Han SB; Park KW; Saratale GD; Oh SE Bioresour Technol; 2011 Jan; 102(1):342-7. PubMed ID: 20656480 [TBL] [Abstract][Full Text] [Related]
19. Carbon-riveted Pt catalyst supported on nanocapsule MWCNTs-Al2O3 with ultrahigh stability for high-temperature proton exchange membrane fuel cells. Jiang ZZ; Wang ZB; Qu WL; Rivera H; Gu DM; Yin GP Nanoscale; 2012 Dec; 4(23):7411-8. PubMed ID: 23086074 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black. Srilatha K; Viditha V; Srinivasulu D; Ramakrishna SU; Himabindu V Environ Sci Pollut Res Int; 2016 May; 23(10):9303-11. PubMed ID: 26233751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]