These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26493070)

  • 1. Ability of a novel system for neonatal extracorporeal renal replacement therapy with an ultra-small volume circuit to remove solutes in vitro.
    Nishimi S; Ishikawa K; Sasaki M; Furukawa H; Takada A; Chida S
    Pediatr Nephrol; 2016 Mar; 31(3):493-500. PubMed ID: 26493070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the optimal dose metric in continuous renal replacement therapy.
    Claure-Del Granado R; Macedo E; Chertow GM; Soroko S; Himmelfarb J; Ikizler TA; Paganini EP; Mehta RL
    Int J Artif Organs; 2012 Jun; 35(6):413-24. PubMed ID: 22466995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.
    Kim JC; Cruz D; Garzotto F; Kaushik M; Teixeria C; Baldwin M; Baldwin I; Nalesso F; Kim JH; Kang E; Kim HC; Ronco C
    Blood Purif; 2013; 35(1-3):106-11. PubMed ID: 23343554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis.
    Lindsay RM; Bene B; Goux N; Heidenheim AP; Landgren C; Sternby J
    Am J Kidney Dis; 2001 Sep; 38(3):565-74. PubMed ID: 11532690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Con-Current versus Counter-Current Dialysate Flow during CVVHD. A Comparative Study for Creatinine and Urea Removal.
    Baldwin I; Baldwin M; Fealy N; Neri M; Garzotto F; Kim JC; Giuliani A; Basso F; Nalesso F; Brendolan A; Ronco C
    Blood Purif; 2016; 41(1-3):171-6. PubMed ID: 26764970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effects of dialysate and ultrafiltration flow rate on solute clearance during continuous renal replacement therapy].
    Gong D; Ji D; Xie H; Xu B; Liu Y; Li L
    Zhonghua Nei Ke Za Zhi; 2001 Mar; 40(3):183-6. PubMed ID: 11798577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of a blood purification system for renal failure rats using small-size dialyzer membranes.
    Yorimitsu D; Satoh M; Koremoto M; Haruna Y; Nagasu H; Kuwabara A; Sasaki T; Kashihara N
    Ther Apher Dial; 2012 Dec; 16(6):566-72. PubMed ID: 23190517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of increasing dialyzer mass transfer area coefficient and dialysate flow on clearance of protein-bound solutes: a pilot crossover trial.
    Luo FJ; Patel KP; Marquez IO; Plummer NS; Hostetter TH; Meyer TW
    Am J Kidney Dis; 2009 Jun; 53(6):1042-9. PubMed ID: 19394728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the Spectrum of Extracorporeal Strategies in Small Infants with Hyperammonemia.
    Ceschia G; Parolin M; Longo G; Ronco C; Vidal E
    Blood Purif; 2023; 52(9-10):729-736. PubMed ID: 37725911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solute transport in continuous hemodialysis: a new treatment for acute renal failure.
    Sigler MH; Teehan BP
    Kidney Int; 1987 Oct; 32(4):562-71. PubMed ID: 3430952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serial measurement of electrolyte and citrate concentrations in blood-primed continuous hemodialysis circuits during closed-circuit dialysis.
    Saito D; Fujimaru T; Inoue Y; Hirayama T; Ezaki I; Kin H; Shuo T; Nakayama M; Komatsu Y
    Pediatr Nephrol; 2020 Jan; 35(1):127-133. PubMed ID: 31372760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM).
    Ronco C; Garzotto F; Brendolan A; Zanella M; Bellettato M; Vedovato S; Chiarenza F; Ricci Z; Goldstein SL
    Lancet; 2014 May; 383(9931):1807-13. PubMed ID: 24856026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations.
    Lorenzin A; Garzotto F; Alghisi A; Neri M; Galeano D; Aresu S; Pani A; Vidal E; Ricci Z; Murer L; Goldstein SL; Ronco C
    Pediatr Nephrol; 2016 Oct; 31(10):1659-65. PubMed ID: 27139897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracorporeal Ammonia Clearance for Hyperammonemia in Critically Ill Patients: A Scoping Review.
    Naorungroj T; Yanase F; Eastwood GM; Baldwin I; Bellomo R
    Blood Purif; 2021; 50(4-5):453-461. PubMed ID: 33279903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine for haemodialysing very small infants.
    Everdell NL; Coulthard MG; Crosier J; Keir MJ
    Pediatr Nephrol; 2005 May; 20(5):636-43. PubMed ID: 15772838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of urea by electro-oxidation in a miniature dialysis device: a study in awake goats.
    Wester M; van Gelder MK; Joles JA; Simonis F; Hazenbrink DHM; van Berkel TWM; Vaessen KRD; Boer WH; Verhaar MC; Gerritsen KGF
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1385-F1397. PubMed ID: 29993277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urea kinetics during sustained low-efficiency dialysis in critically ill patients requiring renal replacement therapy.
    Marshall MR; Golper TA; Shaver MJ; Alam MG; Chatoth DK
    Am J Kidney Dis; 2002 Mar; 39(3):556-70. PubMed ID: 11877575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous hemodialysis therapy for an extremely low-birthweight infant with hyperammonemia.
    Kaneko M; Ogasawara K; Go H; Imamura T; Momoi N; Hosoya M
    Pediatr Int; 2013 Oct; 55(5):656-8. PubMed ID: 24134757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choice of Catheter Size for Infants in Continuous Renal Replacement Therapy: Bigger Is Not Always Better.
    Garzotto F; Zaccaria M; Vidal E; Ricci Z; Lorenzin A; Neri M; Murer L; Nalesso F; Ruggeri A; Ronco C
    Pediatr Crit Care Med; 2019 Mar; 20(3):e170-e179. PubMed ID: 30531553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow continuous hemodialysis--new therapy for acute renal failure in critically ill patients--Part 1. Theoretical consideration and new technique.
    Kudoh Y; Iimura O
    Jpn Circ J; 1988 Oct; 52(10):1171-82. PubMed ID: 3210294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.