BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26493587)

  • 21. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research.
    Bell C; Smith GT; Sweredoski MJ; Hess S
    J Proteome Res; 2012 Jan; 11(1):119-30. PubMed ID: 22053987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of the
    van Wijk KJ; Leppert T; Sun Z; Kearly A; Li M; Mendoza L; Guzchenko I; Debley E; Sauermann G; Routray P; Malhotra S; Nelson A; Sun Q; Deutsch EW
    J Proteome Res; 2024 Jan; 23(1):185-214. PubMed ID: 38104260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project.
    Cho JY; Lee HJ; Jeong SK; Kim KY; Kwon KH; Yoo JS; Omenn GS; Baker MS; Hancock WS; Paik YK
    J Proteome Res; 2015 Dec; 14(12):4959-66. PubMed ID: 26330117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic analysis of the oxidative stress response in Candida albicans.
    Kusch H; Engelmann S; Albrecht D; Morschhäuser J; Hecker M
    Proteomics; 2007 Mar; 7(5):686-97. PubMed ID: 17285563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tandem affinity purification of the Candida albicans septin protein complex.
    Kaneko A; Umeyama T; Hanaoka N; Monk BC; Uehara Y; Niimi M
    Yeast; 2004 Sep; 21(12):1025-33. PubMed ID: 15449307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2006 Aug; 347(1):150-7. PubMed ID: 16808903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome.
    Lluch-Senar M; Mancuso FM; Climente-González H; Peña-Paz MI; Sabido E; Serrano L
    Proteomics; 2016 Feb; 16(4):554-63. PubMed ID: 26702875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-Scale Reanalysis of Publicly Available HeLa Cell Proteomics Data in the Context of the Human Proteome Project.
    Robin T; Bairoch A; Müller M; Lisacek F; Lane L
    J Proteome Res; 2018 Dec; 17(12):4160-4170. PubMed ID: 30175587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Candida albicans plasma membrane proteome.
    Cabezón V; Llama-Palacios A; Nombela C; Monteoliva L; Gil C
    Proteomics; 2009 Oct; 9(20):4770-86. PubMed ID: 19824013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of missing proteins in the human liver proteome by improved MRM-approach-based targeted proteomics.
    Chen C; Liu X; Zheng W; Zhang L; Yao J; Yang P
    J Proteome Res; 2014 Apr; 13(4):1969-78. PubMed ID: 24597967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the Possibility of Detecting Variants in Shotgun Proteomics via LeTE-Fusion Analysis Pipeline.
    Mamie Lih TS; Choong WK; Chen YJ; Sung TY
    J Proteome Res; 2018 Sep; 17(9):2937-2952. PubMed ID: 30088773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows.
    Deutsch EW; Lam H; Aebersold R
    EMBO Rep; 2008 May; 9(5):429-34. PubMed ID: 18451766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying 'Aromatoleum' sp. strain EbN1.
    Hufnagel P; Rabus R
    J Mol Microbiol Biotechnol; 2006; 11(1-2):53-81. PubMed ID: 16825790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of the Candida albicans cell wall proteome.
    Castillo L; Calvo E; Martínez AI; Ruiz-Herrera J; Valentín E; Lopez JA; Sentandreu R
    Proteomics; 2008 Sep; 8(18):3871-81. PubMed ID: 18712765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bovine PeptideAtlas of milk and mammary gland proteomes.
    Bislev SL; Deutsch EW; Sun Z; Farrah T; Aebersold R; Moritz RL; Bendixen E; Codrea MC
    Proteomics; 2012 Sep; 12(18):2895-9. PubMed ID: 22837157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimizing proteome redundancy in the UniProt Knowledgebase.
    Bursteinas B; Britto R; Bely B; Auchincloss A; Rivoire C; Redaschi N; O'Donovan C; Martin MJ
    Database (Oxford); 2016; 2016():. PubMed ID: 28025334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational prediction of proteotypic peptides for quantitative proteomics.
    Mallick P; Schirle M; Chen SS; Flory MR; Lee H; Martin D; Ranish J; Raught B; Schmitt R; Werner T; Kuster B; Aebersold R
    Nat Biotechnol; 2007 Jan; 25(1):125-31. PubMed ID: 17195840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.