These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26493893)

  • 1. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures.
    Franco-Pérez M; Gázquez JL; Ayers PW; Vela A
    J Chem Phys; 2015 Oct; 143(15):154103. PubMed ID: 26493893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic hardness and the maximum hardness principle.
    Franco-Pérez M; Gázquez JL; Ayers PW; Vela A
    J Chem Phys; 2017 Aug; 147(7):074113. PubMed ID: 28830183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.
    Franco-Pérez M; Ayers PW; Gázquez JL; Vela A
    Phys Chem Chem Phys; 2017 May; 19(21):13687-13695. PubMed ID: 28497136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic Justification for the Parabolic Model for Reactivity Indicators with Respect to Electron Number and a Rigorous Definition for the Electrophilicity: The Essential Role Played by the Electronic Entropy.
    Franco-Pérez M; Gázquez JL; Ayers PW; Vela A
    J Chem Theory Comput; 2018 Feb; 14(2):597-606. PubMed ID: 29268007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic chemical response indexes at finite temperature in the canonical ensemble.
    Franco-Pérez M; Gázquez JL; Vela A
    J Chem Phys; 2015 Jul; 143(2):024112. PubMed ID: 26178095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local and linear chemical reactivity response functions at finite temperature in density functional theory.
    Franco-Pérez M; Ayers PW; Gázquez JL; Vela A
    J Chem Phys; 2015 Dec; 143(24):244117. PubMed ID: 26723661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electronic temperature definition for the reactive electronic species: Conciliating practical approaches in conceptual chemical reactivity theory with a rigorous ensemble formulation.
    Franco-Pérez M
    J Chem Phys; 2019 Aug; 151(7):074105. PubMed ID: 31438714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness.
    Malek A; Balawender R
    J Chem Phys; 2015 Feb; 142(5):054104. PubMed ID: 25662633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting electroaccepting and electrodonating powers: proposals for local electrophilicity and local nucleophilicity descriptors.
    Morell C; Gázquez JL; Vela A; Guégan F; Chermette H
    Phys Chem Chem Phys; 2014 Dec; 16(48):26832-42. PubMed ID: 25375814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to local hardness.
    Gál T; Geerlings P; De Proft F; Torrent-Sucarrat M
    Phys Chem Chem Phys; 2011 Sep; 13(33):15003-15. PubMed ID: 21792396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular grand-canonical ensemble density functional theory and exploration of chemical space.
    von Lilienfeld OA; Tuckerman ME
    J Chem Phys; 2006 Oct; 125(15):154104. PubMed ID: 17059236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local and nonlocal counterparts of global descriptors: the cases of chemical softness and hardness.
    Franco-Pérez M; Polanco-Ramírez CA; Gázquez JL; Ayers PW
    J Mol Model; 2018 Sep; 24(10):285. PubMed ID: 30238252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Going beyond the three-state ensemble model: the electronic chemical potential and Fukui function for the general case.
    Franco-Pérez M; Heidar-Zadeh F; Ayers PW; Gázquez JL; Vela A
    Phys Chem Chem Phys; 2017 May; 19(18):11588-11602. PubMed ID: 28429010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analogies and differences between two ways to evaluate the global hardness.
    Torrent-Sucarrat M; Geerlings P
    J Chem Phys; 2006 Dec; 125(24):244101. PubMed ID: 17199334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Chemical Potential of Many-Body Perturbation Theory in Extended Systems.
    Hummel F
    J Chem Theory Comput; 2023 Mar; 19(5):1568-1581. PubMed ID: 36790901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending the Scope of Conceptual Density Functional Theory with Second Order Analytical Methodologies.
    Wang B; Geerlings P; Liu S; De Proft F
    J Chem Theory Comput; 2024 Feb; 20(3):1169-1184. PubMed ID: 38310523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hardness potential derivatives and their relation to Fukui indices.
    Saha S; Bhattacharjee R; Roy RK
    J Comput Chem; 2013 Mar; 34(8):662-72. PubMed ID: 23175426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Approach to Electronic Charge Transfer.
    Franco-Pérez M; Gázquez JL; Ayers PW; Vela A
    J Phys Chem A; 2020 Jul; 124(26):5465-5473. PubMed ID: 32501006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory.
    Isegawa M; Gao J; Truhlar DG
    J Chem Phys; 2011 Aug; 135(8):084107. PubMed ID: 21895159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.