These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26493912)

  • 21. Proton disorder and elasticity of hexagonal ice and gas hydrates.
    Gudkovskikh SV; Kirov MV
    J Mol Model; 2019 Jan; 25(2):32. PubMed ID: 30617625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Analysis of Vibrational Spectra of Hydrogen Bonds in sII and sH Gas Hydrates.
    Guo Q; Wang HC; Liu XY; Yuan XQ; Dong XT; Li YN; Yin Y; Zhang P
    ACS Omega; 2023 Mar; 8(12):11634-11639. PubMed ID: 37008132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopic fingerprints in the low frequency spectrum of ice (Ih), clathrate hydrates, supercooled water, and hydrophobic hydration reveal similarities in the hydrogen bond network motifs.
    Funke S; Sebastiani F; Schwaab G; Havenith M
    J Chem Phys; 2019 Jun; 150(22):224505. PubMed ID: 31202220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical and energetic properties of hydrogen and hydrogen-tetrahydrofuran clathrate hydrates.
    Gorman PD; English NJ; MacElroy JM
    Phys Chem Chem Phys; 2011 Nov; 13(44):19780-7. PubMed ID: 21968598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal expansivity for sI and sII clathrate hydrates.
    Hester KC; Huo Z; Ballard AL; Koh CA; Miller KT; Sloan ED
    J Phys Chem B; 2007 Aug; 111(30):8830-5. PubMed ID: 17625823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the hydrogen bonding in ice Ih by first-principles density function methods.
    Zhang P; Tian L; Zhang ZP; Shao G; Li JC
    J Chem Phys; 2012 Jul; 137(4):044504. PubMed ID: 22852628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raman spectra of vibrational and librational modes in methane clathrate hydrates using density functional theory.
    Ramya KR; Pavan Kumar GV; Venkatnathan A
    J Chem Phys; 2012 May; 136(17):174305. PubMed ID: 22583228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The phase diagram of water at negative pressures: virtual ices.
    Conde MM; Vega C; Tribello GA; Slater B
    J Chem Phys; 2009 Jul; 131(3):034510. PubMed ID: 19624212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel hydrogen hydrate structures under pressure.
    Qian GR; Lyakhov AO; Zhu Q; Oganov AR; Dong X
    Sci Rep; 2014 Jul; 4():5606. PubMed ID: 25001502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory.
    Ramya KR; Venkatnathan A
    J Chem Phys; 2013 Mar; 138(12):124305. PubMed ID: 23556721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms for thermal conduction in methane hydrate.
    English NJ; Tse JS
    Phys Rev Lett; 2009 Jul; 103(1):015901. PubMed ID: 19659158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural changes and preferential cage occupancy of ethane hydrate and methane-ethane mixed gas hydrate under very high pressure.
    Hirai H; Takahara N; Kawamura T; Yamamoto Y; Yagi T
    J Chem Phys; 2008 Dec; 129(22):224503. PubMed ID: 19071924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Communication: structural interconversions between principal clathrate hydrate structures.
    Liang S; Kusalik PG
    J Chem Phys; 2015 Jul; 143(1):011102. PubMed ID: 26156457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study of phase transitions in Kr and Ar clathrate hydrates from structure II to structure I under pressure.
    Subbotin OS; Adamova TP; Belosludov RV; Mizuseki H; Kawazoe Y; Kudoh J; Rodger PM; Belosludov VR
    J Chem Phys; 2009 Sep; 131(11):114507. PubMed ID: 19778129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observation of methane filled hexagonal ice stable up to 150 GPa.
    Schaack S; Ranieri U; Depondt P; Gaal R; Kuhs WF; Gillet P; Finocchi F; Bove LE
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16204-16209. PubMed ID: 31332007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure of CO₂ hydrate between 0.7 and 1.0 GPa.
    Tulk CA; Machida S; Klug DD; Lu H; Guthrie M; Molaison JJ
    J Chem Phys; 2014 Nov; 141(17):174503. PubMed ID: 25381527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures of the I-, II- and H-methane clathrates and the ice-methane clathrate phase transition from quantum-chemical modeling with force-field thermal corrections.
    Lenz A; Ojamäe L
    J Phys Chem A; 2011 Jun; 115(23):6169-76. PubMed ID: 21341763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamical properties of hydrogen sulphide motion in its clathrate hydrate from ab initio and classical isobaric-isothermal molecular dynamics.
    English NJ; Tse JS
    J Phys Chem A; 2011 Jun; 115(23):6226-32. PubMed ID: 21391544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new method for screening potential sII and sH hydrogen clathrate hydrate promoters with model potentials.
    Frankcombe TJ; Kroes GJ
    Phys Chem Chem Phys; 2011 Aug; 13(29):13410-20. PubMed ID: 21709922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A methane-water model for coarse-grained simulations of solutions and clathrate hydrates.
    Jacobson LC; Molinero V
    J Phys Chem B; 2010 Jun; 114(21):7302-11. PubMed ID: 20462253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.