These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26493912)

  • 41. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit.
    Hansen TC; Falenty A; Kuhs WF
    J Chem Phys; 2016 Feb; 144(5):054301. PubMed ID: 26851915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate.
    Hutzler D; Stallhofer K; Kienberger R; Riedle E; Iglev H
    J Phys Chem A; 2020 Jul; 124(28):5784-5789. PubMed ID: 32574493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of guest-host hydrogen bonding on the structures and properties of clathrate hydrates.
    Alavi S; Udachin K; Ripmeester JA
    Chemistry; 2010 Jan; 16(3):1017-25. PubMed ID: 19946907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-nucleation between clathrate hydrate polymorphs: assessing the role of stability, growth rate, and structure matching.
    Nguyen AH; Molinero V
    J Chem Phys; 2014 Feb; 140(8):084506. PubMed ID: 24588184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram.
    Liu Y; Huang Y; Zhu C; Li H; Zhao J; Wang L; Ojamäe L; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12684-12691. PubMed ID: 31182582
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates.
    Gorman PD; English NJ; MacElroy JM
    J Chem Phys; 2012 Jan; 136(4):044506. PubMed ID: 22299890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo.
    Cox SJ; Towler MD; Alfè D; Michaelides A
    J Chem Phys; 2014 May; 140(17):174703. PubMed ID: 24811651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unraveling the metastability of the SI and SII carbon monoxide hydrate with a combined DFT-neutron diffraction investigation.
    Pétuya C; Martin-Gondre L; Aurel P; Damay F; Desmedt A
    J Chem Phys; 2019 May; 150(18):184705. PubMed ID: 31091912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Determination of hydration number of methane hydrates using micro-laser Raman spectroscopy].
    Liu CL; Ye YG; Meng QG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):963-6. PubMed ID: 20545140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Infrared Spectra of Gas Hydrates from First-Principles.
    Vlasic TM; Servio PD; Rey AD
    J Phys Chem B; 2019 Jan; 123(4):936-947. PubMed ID: 30608166
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectroscopic signatures of halogens in clathrate hydrate cages. 2. Iodine.
    Kerenskaya G; Goldschleger IU; Apkarian VA; Fleischer E; Janda KC
    J Phys Chem A; 2007 Nov; 111(43):10969-76. PubMed ID: 17918814
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology.
    Michalis VK; Costandy J; Tsimpanogiannis IN; Stubos AK; Economou IG
    J Chem Phys; 2015 Jan; 142(4):044501. PubMed ID: 25637989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular insights into clathrate hydrate nucleation at an ice-solution interface.
    Pirzadeh P; Kusalik PG
    J Am Chem Soc; 2013 May; 135(19):7278-87. PubMed ID: 23638636
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Delving into guest-free and He-filled sI and sII clathrate hydrates: a first-principles computational study.
    Yanes-Rodríguez R; Cabrera-Ramírez A; Prosmiti R
    Phys Chem Chem Phys; 2022 Jun; 24(21):13119-13129. PubMed ID: 35587105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2009 Jul; 113(30):10298-307. PubMed ID: 19585976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and thermodynamics of empty clathrate hydrates below the freezing point of water.
    Cruz FJAL; Mota JPB
    Phys Chem Chem Phys; 2021 Aug; 23(30):16033-16043. PubMed ID: 34286770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen in porous tetrahydrofuran clathrate hydrate.
    Mulder FM; Wagemaker M; van Eijck L; Kearley GJ
    Chemphyschem; 2008 Jun; 9(9):1331-7. PubMed ID: 18481338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Communication: Single crystal x-ray diffraction observation of hydrogen bonding between 1-propanol and water in a structure II clathrate hydrate.
    Udachin K; Alavi S; Ripmeester JA
    J Chem Phys; 2011 Mar; 134(12):121104. PubMed ID: 21456637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase stability of the ice XVII-based CO
    Michl J; Sega M; Dellago C
    J Chem Phys; 2019 Sep; 151(10):104502. PubMed ID: 31521081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.