These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26494181)

  • 1. Structurally driven one-dimensional electron confinement in sub-5-nm graphene nanowrinkles.
    Lim H; Jung J; Ruoff RS; Kim Y
    Nat Commun; 2015 Oct; 6():8601. PubMed ID: 26494181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of the intrinsic bandgap behaviour in as-grown epitaxial twisted graphene.
    Park J; Mitchel WC; Elhamri S; Grazulis L; Hoelscher J; Mahalingam K; Hwang C; Mo SK; Lee J
    Nat Commun; 2015 Jan; 6():5677. PubMed ID: 25562285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous Freezing of Low-Dimensional Water Confined in Graphene Nanowrinkles.
    Verhagen T; Klimes J; Pacakova B; Kalbac M; Vejpravova J
    ACS Nano; 2020 Nov; 14(11):15587-15594. PubMed ID: 33119250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-dimensional confinement and width-dependent bandgap formation in epitaxial graphene nanoribbons.
    Karakachian H; Nguyen TTN; Aprojanz J; Zakharov AA; Yakimova R; Rosenzweig P; Polley CM; Balasubramanian T; Tegenkamp C; Power SR; Starke U
    Nat Commun; 2020 Dec; 11(1):6380. PubMed ID: 33311455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snap-through of graphene nanowrinkles under out-of-plane compression.
    Ma C; Zhang Y; Jiao S; Liu M
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36137514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overdoping Graphene beyond the van Hove Singularity.
    Rosenzweig P; Karakachian H; Marchenko D; Küster K; Starke U
    Phys Rev Lett; 2020 Oct; 125(17):176403. PubMed ID: 33156643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
    Kim KK; Kim SM; Lee YH
    Acc Chem Res; 2016 Mar; 49(3):390-9. PubMed ID: 26878595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic and plasmonic phenomena at graphene grain boundaries.
    Fei Z; Rodin AS; Gannett W; Dai S; Regan W; Wagner M; Liu MK; McLeod AS; Dominguez G; Thiemens M; Castro Neto AH; Keilmann F; Zettl A; Hillenbrand R; Fogler MM; Basov DN
    Nat Nanotechnol; 2013 Nov; 8(11):821-5. PubMed ID: 24122082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward multifunctional wet chemically functionalized graphene-integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity.
    Malig J; Jux N; Guldi DM
    Acc Chem Res; 2013 Jan; 46(1):53-64. PubMed ID: 22916796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing Well-Defined Nanowrinkles in CVD Grown Graphene.
    Verhagen T; Pacakova B; Kalbac M; Vejpravova J
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transport through one-dimensional Moiré crystals.
    Bonnet R; Lherbier A; Barraud C; Della Rocca ML; Lafarge P; Charlier JC
    Sci Rep; 2016 Jan; 6():19701. PubMed ID: 26786067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size, dimensionality, and strong electron correlation in nanoscience.
    Brus L
    Acc Chem Res; 2014 Oct; 47(10):2951-9. PubMed ID: 25120173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy gaps in "metallic" single-walled carbon nanotubes.
    Ouyang M; Huang JL; Cheung CL; Lieber CM
    Science; 2001 Apr; 292(5517):702-5. PubMed ID: 11326093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.