These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 26494196)
1. Self-assembly and structural-functional flexibility of oxygenic photosynthetic machineries: personal perspectives. Garab G Photosynth Res; 2016 Jan; 127(1):131-50. PubMed ID: 26494196 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical organization and structural flexibility of thylakoid membranes. Garab G Biochim Biophys Acta; 2014 Apr; 1837(4):481-94. PubMed ID: 24333385 [TBL] [Abstract][Full Text] [Related]
3. Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Dobrikova AG; Várkonyi Z; Krumova SB; Kovács L; Kostov GK; Todinova SJ; Busheva MC; Taneva SG; Garab G Biochemistry; 2003 Sep; 42(38):11272-80. PubMed ID: 14503877 [TBL] [Abstract][Full Text] [Related]
4. Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity. Cseh Z; Rajagopal S; Tsonev T; Busheva M; Papp E; Garab G Biochemistry; 2000 Dec; 39(49):15250-7. PubMed ID: 11106505 [TBL] [Abstract][Full Text] [Related]
5. Macroorganisation and flexibility of thylakoid membranes. Lambrev PH; Akhtar P Biochem J; 2019 Oct; 476(20):2981-3018. PubMed ID: 31657443 [TBL] [Abstract][Full Text] [Related]
6. Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII. Miloslavina Y; Lambrev PH; Jávorfi T; Várkonyi Z; Karlický V; Wall JS; Hind G; Garab G Photosynth Res; 2012 Mar; 111(1-2):29-39. PubMed ID: 21667227 [TBL] [Abstract][Full Text] [Related]
7. Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Tóth TN; Rai N; Solymosi K; Zsiros O; Schröder WP; Garab G; van Amerongen H; Horton P; Kovács L Biochim Biophys Acta; 2016 Sep; 1857(9):1479-1489. PubMed ID: 27154055 [TBL] [Abstract][Full Text] [Related]
8. Membrane crystals of plant light-harvesting complex II disassemble reversibly in light. Hind G; Wall JS; Várkonyi Z; Istokovics A; Lambrev PH; Garab G Plant Cell Physiol; 2014 Jul; 55(7):1296-303. PubMed ID: 24793749 [TBL] [Abstract][Full Text] [Related]
9. Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. Dall'Osto L; Cazzaniga S; Zappone D; Bassi R Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148035. PubMed ID: 31226317 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of lamellar aggregates of LHCII and LHCII-lipid macro-assemblies with light-inducible structural transitions. Simidjiev I; Várkonyi Z; Lambrev PH; Garab G Methods Mol Biol; 2011; 684():127-38. PubMed ID: 20960127 [TBL] [Abstract][Full Text] [Related]
11. Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane. Croce R; van Amerongen H J Photochem Photobiol B; 2011; 104(1-2):142-53. PubMed ID: 21402480 [TBL] [Abstract][Full Text] [Related]
12. Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II. Indications for the role of LHCII-only macrodomains in thylakoids. Holm JK; Várkonyi Z; Kovács L; Posselt D; Garab G Photosynth Res; 2005 Nov; 86(1-2):275-82. PubMed ID: 16172945 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of lamellar aggregates of LHCII and LHCII-lipid macro-assemblies with light-inducible structural transitions. Simidjiev I; Várkonyi Z; Garab G Methods Mol Biol; 2004; 274():105-14. PubMed ID: 15187273 [TBL] [Abstract][Full Text] [Related]
14. On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. Liu H; Blankenship RE Biochim Biophys Acta Bioenerg; 2019 Nov; 1860(11):148079. PubMed ID: 31518567 [TBL] [Abstract][Full Text] [Related]
15. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982 [TBL] [Abstract][Full Text] [Related]
16. Thylakoid membrane unstacking increases LHCII thermal stability and lipid phase fluidity. Petrova N; Todinova S; Paunov M; Kovács L; Taneva S; Krumova S J Bioenerg Biomembr; 2018 Dec; 50(6):425-435. PubMed ID: 30607760 [TBL] [Abstract][Full Text] [Related]
17. Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. Horton P; Wentworth M; Ruban A FEBS Lett; 2005 Aug; 579(20):4201-6. PubMed ID: 16051219 [TBL] [Abstract][Full Text] [Related]
19. High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. Nama S; Madireddi SK; Devadasu ER; Subramanyam R J Photochem Photobiol B; 2015 Nov; 152(Pt B):367-76. PubMed ID: 26388469 [TBL] [Abstract][Full Text] [Related]
20. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling. Kangasjärvi S; Tikkanen M; Durian G; Aro EM Plant Physiol Biochem; 2014 Aug; 81():128-34. PubMed ID: 24361390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]