These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 26494285)
1. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285 [TBL] [Abstract][Full Text] [Related]
2. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Pedrolli DB; Mack M Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894 [TBL] [Abstract][Full Text] [Related]
3. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. Lee ER; Blount KF; Breaker RR RNA Biol; 2009; 6(2):187-94. PubMed ID: 19246992 [TBL] [Abstract][Full Text] [Related]
4. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987 [TBL] [Abstract][Full Text] [Related]
5. The physiological role of riboflavin transporter and involvement of FMN-riboswitch in its gene expression in Corynebacterium glutamicum. Takemoto N; Tanaka Y; Inui M; Yukawa H Appl Microbiol Biotechnol; 2014 May; 98(9):4159-68. PubMed ID: 24531272 [TBL] [Abstract][Full Text] [Related]
6. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Solovieva IM; Kreneva RA; Leak DJ; Perumov DA Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():67-73. PubMed ID: 10206712 [TBL] [Abstract][Full Text] [Related]
7. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. Mack M; van Loon AP; Hohmann HP J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052 [TBL] [Abstract][Full Text] [Related]
8. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. Ott E; Stolz J; Lehmann M; Mack M RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008 [TBL] [Abstract][Full Text] [Related]
9. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting. Wang H; Mann PA; Xiao L; Gill C; Galgoci AM; Howe JA; Villafania A; Barbieri CM; Malinverni JC; Sher X; Mayhood T; McCurry MD; Murgolo N; Flattery A; Mack M; Roemer T Cell Chem Biol; 2017 May; 24(5):576-588.e6. PubMed ID: 28434876 [TBL] [Abstract][Full Text] [Related]
10. Rare variants of the FMN riboswitch class in Atilho RM; Perkins KR; Breaker RR RNA; 2019 Jan; 25(1):23-34. PubMed ID: 30287481 [TBL] [Abstract][Full Text] [Related]
11. Direct evolution of riboflavin kinase significantly enhance flavin mononucleotide synthesis by design and optimization of flavin mononucleotide riboswitch. Du Y; Zhang X; Zhang H; Zhu R; Zhao Z; Han J; Zhang D; Zhang X; Zhang X; Pan X; You J; Rao Z Bioresour Technol; 2023 Aug; 381():128774. PubMed ID: 36822556 [TBL] [Abstract][Full Text] [Related]
12. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Pedrolli DB; Matern A; Wang J; Ester M; Siedler K; Breaker R; Mack M Nucleic Acids Res; 2012 Sep; 40(17):8662-73. PubMed ID: 22740651 [TBL] [Abstract][Full Text] [Related]
13. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Serganov A; Huang L; Patel DJ Nature; 2009 Mar; 458(7235):233-7. PubMed ID: 19169240 [TBL] [Abstract][Full Text] [Related]
14. RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5'-untranslated leader of rib mRNA. Higashitsuji Y; Angerer A; Berghaus S; Hobl B; Mack M FEMS Microbiol Lett; 2007 Sep; 274(1):48-54. PubMed ID: 17590224 [TBL] [Abstract][Full Text] [Related]
15. An mRNA structure that controls gene expression by binding FMN. Winkler WC; Cohen-Chalamish S; Breaker RR Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15908-13. PubMed ID: 12456892 [TBL] [Abstract][Full Text] [Related]
16. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Boumezbeur AH; Bruer M; Stoecklin G; Mack M Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407 [TBL] [Abstract][Full Text] [Related]
17. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties. Rode AB; Endoh T; Sugimoto N Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the interactions of flavin mononucleotide (FMN) and riboflavin with FMN riboswitch: a molecular dynamics simulation study. Wakchaure PD; Jana K; Ganguly B J Biomol Struct Dyn; 2020 Aug; 38(13):3856-3866. PubMed ID: 31498025 [TBL] [Abstract][Full Text] [Related]
19. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Wickiser JK; Winkler WC; Breaker RR; Crothers DM Mol Cell; 2005 Apr; 18(1):49-60. PubMed ID: 15808508 [TBL] [Abstract][Full Text] [Related]
20. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Mironov AS; Gusarov I; Rafikov R; Lopez LE; Shatalin K; Kreneva RA; Perumov DA; Nudler E Cell; 2002 Nov; 111(5):747-56. PubMed ID: 12464185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]