These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26494515)

  • 1. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms.
    Waltes R; Chiocchetti AG; Freitag CM
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jul; 171(5):650-75. PubMed ID: 26494515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems.
    Miczek KA; Fish EW; De Bold JF; De Almeida RM
    Psychopharmacology (Berl); 2002 Oct; 163(3-4):434-58. PubMed ID: 12373445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models?
    Veenema AH
    Front Neuroendocrinol; 2009 Oct; 30(4):497-518. PubMed ID: 19341763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetics of aggressive behavior: An overview.
    Veroude K; Zhang-James Y; Fernàndez-Castillo N; Bakker MJ; Cormand B; Faraone SV
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jan; 171B(1):3-43. PubMed ID: 26345359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.
    Zhang-James Y; Faraone SV
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jul; 171(5):641-9. PubMed ID: 26288127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggressive behavior in humans: Genes and pathways identified through association studies.
    Fernàndez-Castillo N; Cormand B
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jul; 171(5):676-96. PubMed ID: 26773414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoamine and neuroendocrine gene-sets associate with frustration-based aggression in a gender-specific manner.
    van Donkelaar MMJ; Hoogman M; Shumskaya E; Buitelaar JK; Bralten J; Franke B
    Eur Neuropsychopharmacol; 2020 Jan; 30():75-86. PubMed ID: 29191428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior.
    Fernàndez-Castillo N; Gan G; van Donkelaar MMJ; Vaht M; Weber H; Retz W; Meyer-Lindenberg A; Franke B; Harro J; Reif A; Faraone SV; Cormand B
    Eur Neuropsychopharmacol; 2020 Jan; 30():44-55. PubMed ID: 29174947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways.
    Freudenberg F; Carreño Gutierrez H; Post AM; Reif A; Norton WH
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jul; 171(5):603-40. PubMed ID: 26284957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity in the development of proactive and reactive aggression in childhood: Common and specific genetic - environmental factors.
    Paquin S; Lacourse E; Brendgen M; Vitaro F; Dionne G; Tremblay RE; Boivin M
    PLoS One; 2017; 12(12):e0188730. PubMed ID: 29211810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive vs proactive aggression: A differential psychobiological profile? Conclusions derived from a systematic review.
    Romero-Martínez Á; Sarrate-Costa C; Moya-Albiol L
    Neurosci Biobehav Rev; 2022 May; 136():104626. PubMed ID: 35331815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurogenetics of aggressive behavior: studies in primates.
    Barr CS; Driscoll C
    Curr Top Behav Neurosci; 2014; 17():45-71. PubMed ID: 24368617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining genetic and environmental effects on reactive versus proactive aggression.
    Brendgen M; Vitaro F; Boivin M; Dionne G; Pérusse D
    Dev Psychol; 2006 Nov; 42(6):1299-312. PubMed ID: 17087562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior.
    Tielbeek JJ; Karlsson Linnér R; Beers K; Posthuma D; Popma A; Polderman TJ
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jul; 171(5):748-60. PubMed ID: 26990155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human aggression across the lifespan: genetic propensities and environmental moderators.
    Tuvblad C; Baker LA
    Adv Genet; 2011; 75():171-214. PubMed ID: 22078481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetics of Aggression.
    Duclot F; Kabbaj M
    Curr Top Behav Neurosci; 2022; 54():283-310. PubMed ID: 34595741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual variation in aggression of feral rodent strains: a standard for the genetics of aggression and violence?
    de Boer SF; van der Vegt BJ; Koolhaas JM
    Behav Genet; 2003 Sep; 33(5):485-501. PubMed ID: 14574126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: Studies in humans and animals.
    Chistiakov DA; Chekhonin VP
    World J Biol Psychiatry; 2019 Apr; 20(4):258-277. PubMed ID: 28441915
    [No Abstract]   [Full Text] [Related]  

  • 19. Identifying cognitive predictors of reactive and proactive aggression.
    Brugman S; Lobbestael J; Arntz A; Cima M; Schuhmann T; Dambacher F; Sack AT
    Aggress Behav; 2015 Jan; 41(1):51-64. PubMed ID: 27539874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The developmental origins of chronic physical aggression: biological pathways triggered by early life adversity.
    Provençal N; Booij L; Tremblay RE
    J Exp Biol; 2015 Jan; 218(Pt 1):123-33. PubMed ID: 25568459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.