These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26494532)
1. In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048. Chandar NB; Ghosh S; Lo R; Banjo S; Ganguly B Chem Biol Interact; 2015 Dec; 242():299-306. PubMed ID: 26494532 [TBL] [Abstract][Full Text] [Related]
2. The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies. Lo R; Chandar NB; Ghosh S; Ganguly B Mol Biosyst; 2016 Apr; 12(4):1224-31. PubMed ID: 26879641 [TBL] [Abstract][Full Text] [Related]
3. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies. Lo R; Ganguly B Mol Biosyst; 2014 Jul; 10(9):2368-83. PubMed ID: 24964273 [TBL] [Abstract][Full Text] [Related]
4. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies. Ghosh S; Chandar NB; Jana K; Ganguly B J Comput Aided Mol Des; 2017 Aug; 31(8):729-742. PubMed ID: 28646405 [TBL] [Abstract][Full Text] [Related]
5. Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations. Katalinić M; Šinko G; Maček Hrvat N; Zorbaz T; Bosak A; Kovarik Z Toxicology; 2018 Aug; 406-407():104-113. PubMed ID: 29772260 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in vivo evaluation of pyridinium oximes: mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity. Calić M; Vrdoljak AL; Radić B; Jelić D; Jun D; Kuca K; Kovarik Z Toxicology; 2006 Feb; 219(1-3):85-96. PubMed ID: 16332406 [TBL] [Abstract][Full Text] [Related]
7. Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase. Kovarik Z; Maček Hrvat N; Kalisiak J; Katalinić M; Sit RK; Zorbaz T; Radić Z; Fokin VV; Sharpless KB; Taylor P Toxicol Appl Pharmacol; 2019 Jun; 372():40-46. PubMed ID: 30978400 [TBL] [Abstract][Full Text] [Related]
8. Structural changes of phenylalanine 338 and histidine 447 revealed by the crystal structures of tabun-inhibited murine acetylcholinesterase. Ekström F; Akfur C; Tunemalm AK; Lundberg S Biochemistry; 2006 Jan; 45(1):74-81. PubMed ID: 16388582 [TBL] [Abstract][Full Text] [Related]
9. In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes--K027, K005, K033 and K048. Kuca K; Cabal J Cent Eur J Public Health; 2004 Mar; 12 Suppl():S59-61. PubMed ID: 15141981 [TBL] [Abstract][Full Text] [Related]
10. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE. Kovarik Z; Maček N; Sit RK; Radić Z; Fokin VV; Barry Sharpless K; Taylor P Chem Biol Interact; 2013 Mar; 203(1):77-80. PubMed ID: 22960624 [TBL] [Abstract][Full Text] [Related]
11. A comparison of the ability of a new bispyridinium oxime--1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. Kuca K; Kassa J J Enzyme Inhib Med Chem; 2003 Dec; 18(6):529-35. PubMed ID: 15008517 [TBL] [Abstract][Full Text] [Related]
12. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: possible implications for the HI-6 antidote substrate specificity. Artursson E; Andersson PO; Akfur C; Linusson A; Börjegren S; Ekström F Biochem Pharmacol; 2013 May; 85(9):1389-97. PubMed ID: 23376121 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: structural basis for differences in the ability to reactivate tabun conjugates. Ekström F; Pang YP; Boman M; Artursson E; Akfur C; Börjegren S Biochem Pharmacol; 2006 Aug; 72(5):597-607. PubMed ID: 16876764 [TBL] [Abstract][Full Text] [Related]
14. Differential binding of bispyridinium oxime drugs with acetylcholinesterase. Kesharwani MK; Ganguly B; Das A; Bandyopadhyay T Acta Pharmacol Sin; 2010 Mar; 31(3):313-28. PubMed ID: 20140002 [TBL] [Abstract][Full Text] [Related]
15. Pretreatment with pyridinium oximes improves antidotal therapy against tabun poisoning. Lucić Vrdoljak A; Calić M; Radić B; Berend S; Jun D; Kuca K; Kovarik Z Toxicology; 2006 Nov; 228(1):41-50. PubMed ID: 16982122 [TBL] [Abstract][Full Text] [Related]
16. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates. Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P Biochemistry; 2004 Mar; 43(11):3222-9. PubMed ID: 15023072 [TBL] [Abstract][Full Text] [Related]
17. Novel acetylcholinesterase reactivator--oxime K048--reactivation activity in vitro. Kuca K; Marek J; Karasova J; Pohanka M; Korabecny J; Kalasz H Med Chem; 2010 Jan; 6(1):1-5. PubMed ID: 20402654 [TBL] [Abstract][Full Text] [Related]
18. Oximes: Reactivators of phosphorylated acetylcholinesterase and antidotes in therapy against tabun poisoning. Kovarik Z; Calić M; Sinko G; Bosak A; Berend S; Vrdoljak AL; Radić B Chem Biol Interact; 2008 Sep; 175(1-3):173-9. PubMed ID: 18501341 [TBL] [Abstract][Full Text] [Related]
19. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives. Grosfeld H; Barak D; Ordentlich A; Velan B; Shafferman A Mol Pharmacol; 1996 Sep; 50(3):639-49. PubMed ID: 8794905 [TBL] [Abstract][Full Text] [Related]
20. The cholinergic and non-cholinergic effects of organophosphates and oximes in cultured human myoblasts. Katalinić M; Miš K; Pirkmajer S; Grubič Z; Kovarik Z; Marš T Chem Biol Interact; 2013 Mar; 203(1):144-8. PubMed ID: 23047024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]