These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26494637)

  • 1. Handcrafted multilayer PDMS microchannel scaffolds for peripheral nerve regeneration.
    Hossain R; Kim B; Pankratz R; Ajam A; Park S; Biswal SL; Choi Y
    Biomed Microdevices; 2015 Dec; 17(6):109. PubMed ID: 26494637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees.
    Srinivasan A; Tahilramani M; Bentley JT; Gore RK; Millard DC; Mukhatyar VJ; Joseph A; Haque AS; Stanley GB; English AW; Bellamkonda RV
    Biomaterials; 2015 Feb; 41():151-65. PubMed ID: 25522974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface.
    Gore RK; Choi Y; Bellamkonda R; English A
    J Neural Eng; 2015 Feb; 12(1):016017. PubMed ID: 25605627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves.
    Bozkurt A; Lassner F; O'Dey D; Deumens R; Böcker A; Schwendt T; Janzen C; Suschek CV; Tolba R; Kobayashi E; Sellhaus B; Tholl S; Eummelen L; Schügner F; Damink LO; Weis J; Brook GA; Pallua N
    Biomaterials; 2012 Feb; 33(5):1363-75. PubMed ID: 22082619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral nerve repair through multi-luminal biosynthetic implants.
    Tansey KE; Seifert JL; Botterman B; Delgado MR; Romero MI
    Ann Biomed Eng; 2011 Jun; 39(6):1815-28. PubMed ID: 21347549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoting regeneration of peripheral nerves in-vivo using new PCL-NGF/Tirofiban nerve conduits.
    Chung TW; Yang MC; Tseng CC; Sheu SH; Wang SS; Huang YY; Chen SD
    Biomaterials; 2011 Jan; 32(3):734-43. PubMed ID: 20888633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit.
    Yao L; de Ruiter GC; Wang H; Knight AM; Spinner RJ; Yaszemski MJ; Windebank AJ; Pandit A
    Biomaterials; 2010 Aug; 31(22):5789-97. PubMed ID: 20430432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink-resistant conduit.
    Shahriari D; Shibayama M; Lynam DA; Wolf KJ; Kubota G; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS
    J Biomed Mater Res A; 2017 Dec; 105(12):3392-3399. PubMed ID: 28804998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold.
    Tang X; Xue C; Wang Y; Ding F; Yang Y; Gu X
    Biomaterials; 2012 May; 33(15):3860-7. PubMed ID: 22364696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a multimodal nerve conduit for repair of injured peripheral nerve.
    Quigley AF; Bulluss KJ; Kyratzis IL; Gilmore K; Mysore T; Schirmer KS; Kennedy EL; O'Shea M; Truong YB; Edwards SL; Peeters G; Herwig P; Razal JM; Campbell TE; Lowes KN; Higgins MJ; Moulton SE; Murphy MA; Cook MJ; Clark GM; Wallace GG; Kapsa RM
    J Neural Eng; 2013 Feb; 10(1):016008. PubMed ID: 23283383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of 3D Scaffolds Displaying Biochemical Gradients along Longitudinally Oriented Microchannels for Neural Tissue Engineering.
    Huang L; Gao J; Wang H; Xia B; Yang Y; Xu F; Zheng X; Huang J; Luo Z
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48380-48394. PubMed ID: 33052661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells.
    Yang Y; Yuan X; Ding F; Yao D; Gu Y; Liu J; Gu X
    Tissue Eng Part A; 2011 Sep; 17(17-18):2231-44. PubMed ID: 21542668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decellularized nerve matrix hydrogel scaffolds with longitudinally oriented and size-tunable microchannels for peripheral nerve regeneration.
    Rao Z; Lin T; Qiu S; Zhou J; Liu S; Chen S; Wang T; Liu X; Zhu Q; Bai Y; Quan D
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111791. PubMed ID: 33545917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration.
    Rajaram A; Chen XB; Schreyer DJ
    Tissue Eng Part B Rev; 2012 Dec; 18(6):454-67. PubMed ID: 22646535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration.
    Gu X; Ding F; Yang Y; Liu J
    Prog Neurobiol; 2011 Feb; 93(2):204-30. PubMed ID: 21130136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of nanofibrous scaffolds in neural tissue engineering.
    Cao H; Liu T; Chew SY
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1055-64. PubMed ID: 19643156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves.
    Stoyanova II; van Wezel RJ; Rutten WL
    J Neural Eng; 2013 Dec; 10(6):066018. PubMed ID: 24280623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats.
    Li BC; Jiao SS; Xu C; You H; Chen JM
    J Biomed Mater Res A; 2010 Sep; 94(3):769-80. PubMed ID: 20336740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction.
    Jha BS; Colello RJ; Bowman JR; Sell SA; Lee KD; Bigbee JW; Bowlin GL; Chow WN; Mathern BE; Simpson DG
    Acta Biomater; 2011 Jan; 7(1):203-15. PubMed ID: 20727992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.