These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2649491)

  • 41. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli.
    Schlösser A; Meldorf M; Stumpe S; Bakker EP; Epstein W
    J Bacteriol; 1995 Apr; 177(7):1908-10. PubMed ID: 7896723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-affinity potassium uptake system in Bacillus acidocaldarius.
    Michels M; Bakker EP
    J Bacteriol; 1987 Sep; 169(9):4335-41. PubMed ID: 3624206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of potassium transport in the generation of a pH gradient in Escherichia coli.
    Kroll RG; Booth IR
    Biochem J; 1981 Sep; 198(3):691-8. PubMed ID: 7034732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thallous ion is accumulated by potassium transport systems in Escherichia coli.
    Damper PD; Epstein W; Rosen BP; Sorensen EN
    Biochemistry; 1979 Sep; 18(19):4165-9. PubMed ID: 385048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter.
    Santa-María GE; Rubio F; Dubcovsky J; Rodríguez-Navarro A
    Plant Cell; 1997 Dec; 9(12):2281-9. PubMed ID: 9437867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence for multiple K+ export systems in Escherichia coli.
    Bakker EP; Booth IR; Dinnbier U; Epstein W; Gajewska A
    J Bacteriol; 1987 Aug; 169(8):3743-9. PubMed ID: 3301813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The implication of YggT of Escherichia coli in osmotic regulation.
    Ito T; Uozumi N; Nakamura T; Takayama S; Matsuda N; Aiba H; Hemmi H; Yoshimura T
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2698-704. PubMed ID: 19966467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical model of the effect of potassium on the uptake of radiocesium by rice.
    Fujimura S; Ishikawa J; Sakuma Y; Saito T; Sato M; Yoshioka K
    J Environ Radioact; 2014 Dec; 138():122-31. PubMed ID: 25222936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cesium Uptake by Rice Roots Largely Depends Upon a Single Gene, HAK1, Which Encodes a Potassium Transporter.
    Rai H; Yokoyama S; Satoh-Nagasawa N; Furukawa J; Nomi T; Ito Y; Fujimura S; Takahashi H; Suzuki R; Yousra E; Goto A; Fuji S; Nakamura SI; Shinano T; Nagasawa N; Wabiko H; Hattori H
    Plant Cell Physiol; 2017 Sep; 58(9):1486-1493. PubMed ID: 28922748
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linked transport of phosphate, potassium ions and protons in Escherichia coli.
    Russell LM; Rosenberg H
    Biochem J; 1979 Oct; 184(1):13-21. PubMed ID: 43137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enrichment and isolation of Flavobacterium strains with tolerance to high concentrations of cesium ion.
    Kato S; Goya E; Tanaka M; Kitagawa W; Kikuchi Y; Asano K; Kamagata Y
    Sci Rep; 2016 Feb; 6():20041. PubMed ID: 26883718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements.
    Isaure MP; Fraysse A; Devès G; Le Lay P; Fayard B; Susini J; Bourguignon J; Ortega R
    Biochimie; 2006 Nov; 88(11):1583-90. PubMed ID: 16987577
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica).
    Song ZZ; Ma RJ; Yu ML
    Genet Mol Res; 2015 Jan; 14(1):774-87. PubMed ID: 25730015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Examination of the competitive effect of alkali ions in the K+, Rb+ and Cs+ transport of rat erythrocytes.
    Györgyi S; Blaskó K
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(1-2):97-105. PubMed ID: 4413344
    [No Abstract]   [Full Text] [Related]  

  • 56. Cation transport in Escherichia coli. VI. K exchange.
    Epstein W; Schultz SG
    J Gen Physiol; 1966 Jan; 49(3):469-81. PubMed ID: 5328217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli.
    Bhattacharyya P; Epstein W; Silver S
    Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1488-92. PubMed ID: 4934520
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potassium transport in a halophilic member of the bacteria domain: identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T.
    Kraegeloh A; Amendt B; Kunte HJ
    J Bacteriol; 2005 Feb; 187(3):1036-43. PubMed ID: 15659681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli.
    Altendorf K; Epstein W; Löhmann A
    J Bacteriol; 1986 Apr; 166(1):334-7. PubMed ID: 3514580
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uptake and extrusion of k+ regulated by extracellular pH in Escherichia coli.
    Yamasaki K; Moriyama Y; Futai M; Tsuchiya T
    FEBS Lett; 1980 Oct; 120(1):125-7. PubMed ID: 7002607
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.