These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26495908)

  • 1. APL: An angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction.
    Borguesan B; Barbachan e Silva M; Grisci B; Inostroza-Ponta M; Dorn M
    Comput Biol Chem; 2015 Dec; 59 Pt A():142-57. PubMed ID: 26495908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heuristic-based tabu search algorithm for folding two-dimensional AB off-lattice model proteins.
    Liu J; Sun Y; Li G; Song B; Huang W
    Comput Biol Chem; 2013 Dec; 47():142-8. PubMed ID: 24077543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Memetic Algorithm for 3-D Protein Structure Prediction Problem.
    Correa L; Borguesan B; Farfan C; Inostroza-Ponta M; Dorn M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):690-704. PubMed ID: 28029627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Memetic Algorithm for 3-D Protein Structure Prediction Problem.
    Correa L; Borguesan B; Farfan C; Inostroza-Ponta M; Dorn M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):690-704. PubMed ID: 27925594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting three-dimensional structure of protein fragments from dihedral angle propensities and molecular dynamics.
    Blayney JK; Ojha PC; Shapcott M
    Int J Comput Biol Drug Des; 2010; 3(2):146-63. PubMed ID: 20852338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NEAT-FLEX: Predicting the conformational flexibility of amino acids using neuroevolution of augmenting topologies.
    Grisci B; Dorn M
    J Bioinform Comput Biol; 2017 Jun; 15(3):1750009. PubMed ID: 28403668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced protein models and their application to the protein folding problem.
    Skolnick J; Kolinski A; Ortiz AR
    J Biomol Struct Dyn; 1998 Oct; 16(2):381-96. PubMed ID: 9833676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new protein structure representation for efficient protein function prediction.
    Maghawry HA; Mostafa MG; Gharib TF
    J Comput Biol; 2014 Dec; 21(12):936-46. PubMed ID: 25343279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces.
    Hayat M; Tahir M; Khan SA
    J Theor Biol; 2014 Apr; 346():8-15. PubMed ID: 24384128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.
    Borguesan B; Inostroza-Ponta M; Dorn M
    J Comput Biol; 2017 Mar; 24(3):255-265. PubMed ID: 27494258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-based protein structure prediction using a reduced state-space hidden Markov model.
    Lampros C; Costas Papaloukas ; Exarchos TP; Yorgos Goletsis ; Fotiadis DI
    Comput Biol Med; 2007 Sep; 37(9):1211-24. PubMed ID: 17161834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential for assessing quality of protein structure based on contact number prediction.
    Ishida T; Nakamura S; Shimizu K
    Proteins; 2006 Sep; 64(4):940-7. PubMed ID: 16788993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks.
    Helles G; Fonseca R
    BMC Bioinformatics; 2009 Oct; 10():338. PubMed ID: 19835576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development.
    Parthiban V; Gromiha MM; Abhinandan M; Schomburg D
    BMC Struct Biol; 2007 Aug; 7():54. PubMed ID: 17705837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fold prediction of helical proteins using torsion angle dynamics and predicted restraints.
    Zhang C; Hou J; Kim SH
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3581-5. PubMed ID: 11904420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-accuracy protein structural class prediction algorithm using predicted secondary structural information.
    Liu T; Jia C
    J Theor Biol; 2010 Dec; 267(3):272-5. PubMed ID: 20831876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An introduction to protein contact prediction.
    Hamilton N; Huber T
    Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An interval-based algorithm to represent conformational states of experimentally determined polypeptide templates and fast prediction of approximated 3D protein structures.
    Dorn M; Souza ON
    Int J Bioinform Res Appl; 2013; 9(5):462-86. PubMed ID: 24001723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native and modeled disulfide bonds in proteins: knowledge-based approaches toward structure prediction of disulfide-rich polypeptides.
    Thangudu RR; Vinayagam A; Pugalenthi G; Manonmani A; Offmann B; Sowdhamini R
    Proteins; 2005 Mar; 58(4):866-79. PubMed ID: 15645448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.