BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26496411)

  • 1. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications.
    Gan Z; Xu H
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28902961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups.
    Pérez-Madrigal MM; Gil AM; Casanovas J; Jiménez AI; Macor LP; Alemán C
    Colloids Surf B Biointerfaces; 2022 Aug; 216():112522. PubMed ID: 35561635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light waveguiding in bioinspired peptide nanostructures.
    Apter B; Lapshina N; Handelman A; Rosenman G
    J Pept Sci; 2019 May; 25(5):e3164. PubMed ID: 30900328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks.
    Ryan K; Beirne J; Redmond G; Kilpatrick JI; Guyonnet J; Buchete NV; Kholkin AL; Rodriguez BJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12702-7. PubMed ID: 25994251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid peptide-PNA monomers as building blocks for the fabrication of supramolecular aggregates.
    Cimmino L; Diaferia C; Rosa M; Morelli G; Rosa E; Accardo A
    J Pept Sci; 2024 Jul; 30(7):e3573. PubMed ID: 38471735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity.
    Basavalingappa V; Bera S; Xue B; O'Donnell J; Guerin S; Cazade PA; Yuan H; Haq EU; Silien C; Tao K; Shimon LJW; Tofail SAM; Thompson D; Kolusheva S; Yang R; Cao Y; Gazit E
    ACS Nano; 2020 Jun; 14(6):7025-7037. PubMed ID: 32441511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of Arg-Phe nanostructures via the solid-vapor phase method.
    Liberato MS; Kogikoski S; Silva ER; Coutinho-Neto MD; Scott LP; Silva RH; Oliveira VX; Ando RA; Alves WA
    J Phys Chem B; 2013 Jan; 117(3):733-40. PubMed ID: 23286315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Honeycomb self-assembled peptide scaffolds by the breath figure method.
    Du M; Zhu P; Yan X; Su Y; Song W; Li J
    Chemistry; 2011 Apr; 17(15):4238-45. PubMed ID: 21387428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.