These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 26496456)
21. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo. Kim HY; Kim HN; Lee SJ; Song JE; Kwon SY; Chung JW; Lee D; Khang G J Tissue Eng Regen Med; 2017 Jan; 11(1):44-57. PubMed ID: 24619952 [TBL] [Abstract][Full Text] [Related]
22. In vitro evaluation of decellularized ECM-derived surgical scaffold biomaterials. Luo X; Kulig KM; Finkelstein EB; Nicholson MF; Liu XH; Goldman SM; Vacanti JP; Grottkau BE; Pomerantseva I; Sundback CA; Neville CM J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):585-593. PubMed ID: 26663848 [TBL] [Abstract][Full Text] [Related]
23. Recent advancements in electrospinning design for tissue engineering applications: A review. Kishan AP; Cosgriff-Hernandez EM J Biomed Mater Res A; 2017 Oct; 105(10):2892-2905. PubMed ID: 28556551 [TBL] [Abstract][Full Text] [Related]
24. Morphology-induced physico-mechanical and biological characteristics of TPU-PDMS blend scaffolds for skin tissue engineering applications. Drupitha MP; Bankoti K; Pal P; Das B; Parameswar R; Dhara S; Nando GB; Naskar K J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1634-1644. PubMed ID: 30332525 [TBL] [Abstract][Full Text] [Related]
25. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold. Sattary M; Rafienia M; Khorasani MT; Salehi H J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):933-950. PubMed ID: 30199600 [TBL] [Abstract][Full Text] [Related]
26. Bottom-up topography assembly into 3D porous scaffold to mediate cell activities. Cheng D; Hou J; Hao L; Cao X; Gao H; Fu X; Wang Y J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1056-63. PubMed ID: 26013977 [TBL] [Abstract][Full Text] [Related]
27. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Murphy CM; Duffy GP; Schindeler A; O'brien FJ J Biomed Mater Res A; 2016 Jan; 104(1):291-304. PubMed ID: 26386362 [TBL] [Abstract][Full Text] [Related]
28. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. Cao D; Xu Z; Chen Y; Ke Q; Zhang C; Guo Y J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):863-873. PubMed ID: 28419693 [TBL] [Abstract][Full Text] [Related]
29. Influence of liquid pore precursors on morphology and mechanical properties of 3D scaffolds obtained by dry inversion phase method. Kruk A; Gadomska-Gajadhur A; Rykaczewska I; Dulnik J; Ruśkowski P; Synoradzki L J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1079-1087. PubMed ID: 30184326 [TBL] [Abstract][Full Text] [Related]
30. Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Freeman FE; Browe DC; Nulty J; Von Euw S; Grayson WL; Kelly DJ Eur Cell Mater; 2019 Oct; 38():168-187. PubMed ID: 31602629 [TBL] [Abstract][Full Text] [Related]
31. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology. Xu Y; Guo X; Yang S; Li L; Zhang P; Sun W; Liu C; Mi S J Biomed Mater Res A; 2018 Jun; 106(6):1664-1676. PubMed ID: 29460433 [TBL] [Abstract][Full Text] [Related]
33. A multilayer scaffold design with spatial arrangement of cells to modulate esophageal tissue growth. Soliman S; Laurent J; Kalenjian L; Burnette K; Hedberg B; La Francesca S J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):324-331. PubMed ID: 29717817 [TBL] [Abstract][Full Text] [Related]
34. Polymeric nanobiocomposites for biomedical applications. Mozumder MS; Mairpady A; Mourad AI J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1241-1259. PubMed ID: 26910862 [TBL] [Abstract][Full Text] [Related]
35. Investigating processing techniques for bovine gelatin electrospun scaffolds for bone tissue regeneration. Taylor BL; Limaye A; Yarborough J; Freeman JW J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1131-1140. PubMed ID: 27017849 [TBL] [Abstract][Full Text] [Related]
36. Reinforcing materials for polymeric tissue engineering scaffolds: A review. Bakht Khosh Hagh H; Farshi Azhar F J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1560-1575. PubMed ID: 30318775 [TBL] [Abstract][Full Text] [Related]
37. Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold. Cho YS; Hong MW; Quan M; Kim SY; Lee SH; Lee SJ; Kim YY; Cho YS J Biomed Mater Res A; 2017 Dec; 105(12):3432-3444. PubMed ID: 28879670 [TBL] [Abstract][Full Text] [Related]
38. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
39. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system. Lee SH; Cho YS; Hong MW; Lee BK; Park Y; Park SH; Kim YY; Cho YS Biomed Mater; 2017 Sep; 12(5):055003. PubMed ID: 28762959 [TBL] [Abstract][Full Text] [Related]