BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26496470)

  • 1. Effect of Surface Adsorption on Temporal and Spatial Broadening in Micro Free Flow Electrophoresis.
    Geiger M; Harstad RK; Bowser MT
    Anal Chem; 2015 Dec; 87(23):11682-90. PubMed ID: 26496470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced surface adsorption in 3D printed acrylonitrile butadiene styrene micro free-flow electrophoresis devices.
    Anciaux SK; Bowser MT
    Electrophoresis; 2020 Feb; 41(3-4):225-234. PubMed ID: 31816114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two-Dimensional Nano Liquid Chromatography-Micro Free Flow Electrophoresis Separations.
    Douma CC; Bowser MT
    Anal Chem; 2023 Dec; 95(50):18379-18387. PubMed ID: 38060457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Speed, Comprehensive, Two Dimensional Separations of Peptides and Small Molecule Biological Amines Using Capillary Electrophoresis Coupled with Micro Free Flow Electrophoresis.
    Johnson AC; Bowser MT
    Anal Chem; 2017 Feb; 89(3):1665-1673. PubMed ID: 27989118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC × μFFE Separations.
    Geiger M; Bowser MT
    Anal Chem; 2016 Feb; 88(4):2177-87. PubMed ID: 26757484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive multidimensional separations of peptides using nano-liquid chromatography coupled with micro free flow electrophoresis.
    Geiger M; Frost NW; Bowser MT
    Anal Chem; 2014 May; 86(10):5136-42. PubMed ID: 24742025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins.
    Dong YC; Shao J; Yin XY; Fan LY; Cao CX
    J Sep Sci; 2011 Jul; 34(14):1683-91. PubMed ID: 21695687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study on the optimization of general conditions for a free-flow electrophoresis device with a thermoelectric cooler.
    Yan J; Yang CZ; Zhang Q; Liu XP; Kong FZ; Cao CX; Jin XQ
    J Sep Sci; 2014 Dec; 37(23):3555-63. PubMed ID: 25216109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Milli-free flow electrophoresis: I. Fast prototyping of mFFE devices.
    Agostino FJ; Evenhuis CJ; Krylov SN
    J Sep Sci; 2011 Mar; 34(5):556-64. PubMed ID: 21280214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh-resolution differential ion mobility separations of conformers for proteins above 10 kDa: onset of dipole alignment?
    Shvartsburg AA
    Anal Chem; 2014 Nov; 86(21):10608-15. PubMed ID: 25340280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-covalent capillary coatings for protein separations in capillary electrophoresis.
    Lucy CA; MacDonald AM; Gulcev MD
    J Chromatogr A; 2008 Mar; 1184(1-2):81-105. PubMed ID: 18164023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption behavior of acidic and basic proteins onto citrate-coated Au surfaces correlated to their native fold, stability, and pI.
    Glomm WR; Halskau Ø; Hanneseth AM; Volden S
    J Phys Chem B; 2007 Dec; 111(51):14329-45. PubMed ID: 18052360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein adsorption in fused-silica and polyacrylamide-coated capillaries.
    Graf M; Galera García R; Wätzig H
    Electrophoresis; 2005 Jun; 26(12):2409-17. PubMed ID: 15966021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins.
    Xiao D; Le TV; Wirth MJ
    Anal Chem; 2004 Apr; 76(7):2055-61. PubMed ID: 15053671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state continuous-flow purification by electrophoresis.
    Agostino FJ; Cherney LT; Galievsky V; Krylov SN
    Angew Chem Int Ed Engl; 2013 Jul; 52(28):7256-60. PubMed ID: 23754325
    [No Abstract]   [Full Text] [Related]  

  • 18. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations.
    Richter AG; Kuzmenko I
    Langmuir; 2013 Apr; 29(17):5167-80. PubMed ID: 23586436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption behavior of cytochrome c, myoglobin and hemoglobin in a quartz surface probed using slab optical waveguide (SOWG) spectroscopy.
    Santos JH; Matsuda N; Qi ZM; Yoshida T; Takatsu A; Kato K
    Anal Sci; 2003 Feb; 19(2):199-204. PubMed ID: 12608745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of charged noncovalent polymer coatings against protein adsorption to silica surfaces studied by evanescent-wave cavity ring-down spectroscopy and capillary electrophoresis.
    Haselberg R; van der Sneppen L; Ariese F; Ubachs W; Gooijer C; de Jong GJ; Somsen GW
    Anal Chem; 2009 Dec; 81(24):10172-8. PubMed ID: 19921852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.