BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26496524)

  • 1. Does a Heavy Fe-Isotope Composition of Akilia Quartz-Amphibole-Pyroxene Rocks Necessitate a BIF Origin?
    Whitehouse MJ; Schoenberg R; Fedo CM; Kamber BS
    Astrobiology; 2015 Oct; 15(10):816-24. PubMed ID: 26496524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth's earliest life.
    Fedo CM; Whitehouse MJ
    Science; 2002 May; 296(5572):1448-52. PubMed ID: 12029129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geological constraints on detecting the earliest life on Earth: a perspective from the Early Archaean (older than 3.7 Gyr) of southwest Greenland.
    Fedo CM; Whitehouse MJ; Kamber BS
    Philos Trans R Soc Lond B Biol Sci; 2006 Jun; 361(1470):851-67. PubMed ID: 16754603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid-deposited graphite and its geobiological implications in early Archean gneiss from Akilia, Greenland.
    Lepland A; van Zuilen MA; Philippot P
    Geobiology; 2011 Jan; 9(1):2-9. PubMed ID: 21070588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of > or = 3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth.
    Nutman AP; Mojzsis SJ; Friend CR
    Geochim Cosmochim Acta; 1997; 61(12):2475-84. PubMed ID: 11541751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments.
    Mishima S; Ohtomo Y; Kakegawa T
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):247-71. PubMed ID: 26631409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.
    Dauphas N; van Zuilen M; Wadhwa M; Davis AM; Marty B; Janney PE
    Science; 2004 Dec; 306(5704):2077-80. PubMed ID: 15604404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for life on Earth before 3,800 million years ago.
    Mojzsis SJ; Arrhenius G; McKeegan KD; Harrison TM; Nutman AP; Friend CR
    Nature; 1996 Nov; 384(6604):55-9. PubMed ID: 8900275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and significance of Archean quartzose rocks at Akilia, Greenland.
    Mojzsis SJ; Harrison TM
    Science; 2002 Nov; 298(5595):917; discussion 917. PubMed ID: 12411670
    [No Abstract]   [Full Text] [Related]  

  • 10. Reassessing the evidence for the earliest traces of life.
    van Zuilen MA; Lepland A; Arrhenius G
    Nature; 2002 Aug; 418(6898):627-30. PubMed ID: 12167858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geology of the Biwabik Iron Formation and Duluth Complex.
    Jirsa MA; Miller JD; Morey GB
    Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S5-S10. PubMed ID: 17997209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable iron isotopes and microbial mediation in red pigmentation of the Rosso Ammonitico (mid-late Jurassic, Verona area, Italy).
    Préat AR; de Jong JT; Mamet BL; Mattielli N
    Astrobiology; 2008 Aug; 8(4):841-57. PubMed ID: 18759562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada.
    Tashiro T; Ishida A; Hori M; Igisu M; Koike M; Méjean P; Takahata N; Sano Y; Komiya T
    Nature; 2017 Sep; 549(7673):516-518. PubMed ID: 28959955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence for eoarchean iron metabolism?
    Hassenkam T; Tsai EHR; Sørensen HO; Dalby KN; Mackenzie DMA; Holler M; Ferreira D; Grolimund D; Bruns S; Rosing MT
    Geobiology; 2021 May; 19(3):218-227. PubMed ID: 33624944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tourmaline mineralization in the Barberton greenstone belt, South Africa: early Archean metasomatism by evaporite-derived boron.
    Byerly GR; Palmer MR
    Contrib Mineral Petrol; 1991 May; 107(3):387-402. PubMed ID: 11542207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic pyrite formation produces a large Fe isotope fractionation.
    Guilbaud R; Butler IB; Ellam RM
    Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover.
    Cox R; Lowe DR
    J Sediment Res A Sediment Petrol Process; 1995 Jan; 65(1):1-12. PubMed ID: 11541214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and -independent isotope effects.
    Dauphas N; Janney PE; Mendybaev RA; Wadhwa M; Richter FM; Davis AM; van Zuilen M; Hines R; Foley CN
    Anal Chem; 2004 Oct; 76(19):5855-63. PubMed ID: 15456307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenicity of an Early Quaternary iron formation, Milos Island, Greece.
    Chi Fru E; Ivarsson M; Kilias SP; Frings PJ; Hemmingsson C; Broman C; Bengtson S; Chatzitheodoridis E
    Geobiology; 2015 May; 13(3):225-44. PubMed ID: 25645266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.