BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26496525)

  • 1. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.
    Qu Y; Engdahl A; Zhu S; Vajda V; McLoughlin N
    Astrobiology; 2015 Oct; 15(10):825-42. PubMed ID: 26496525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record.
    Campbell KA; Lynne BY; Handley KM; Jordan S; Farmer JD; Guido DM; Foucher F; Turner S; Perry RS
    Astrobiology; 2015 Oct; 15(10):858-82. PubMed ID: 26496526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Czaja AD; Wdowiak TJ
    Astrobiology; 2005 Jun; 5(3):333-71. PubMed ID: 15941380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ infrared microspectroscopy of approximately 850 million-year-old prokaryotic fossils.
    Igisu M; Nakashima S; Ueno Y; Awramik SM; Maruyama S
    Appl Spectrosc; 2006 Oct; 60(10):1111-20. PubMed ID: 17059662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-UV Raman Spectroscopy of Carbonaceous Precambrian Microfossils: Insights into the Search for Past Life on Mars.
    Osterhout JT; Schopf JW; Kudryavtsev AB; Czaja AD; Williford KH
    Astrobiology; 2022 Oct; 22(10):1239-1254. PubMed ID: 36194869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman imaging of metastable opal in carbonaceous microfossils of the 700-800 ma old Draken Formation.
    Foucher F; Westall F
    Astrobiology; 2013 Jan; 13(1):57-67. PubMed ID: 23276206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia.
    Sugitani K; Mimura K; Takeuchi M; Yamaguchi T; Suzuki K; Senda R; Asahara Y; Wallis S; Van Kranendonk MJ
    Geobiology; 2015 Nov; 13(6):522-45. PubMed ID: 26189535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of aliphatic C-H bonds in cyanobacteria during experimental thermal maturation in the presence or absence of silica as evaluated by FTIR microspectroscopy.
    Igisu M; Yokoyama T; Ueno Y; Nakashima S; Shimojima M; Ohta H; Maruyama S
    Geobiology; 2018 Jul; 16(4):412-428. PubMed ID: 29869829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancient Oil as a Source of Carbonaceous Matter in 1.88-Billion-Year-Old Gunflint Stromatolites and Microfossils.
    Rasmussen B; Muhling JR; Fischer WW
    Astrobiology; 2021 Jun; 21(6):655-672. PubMed ID: 33684328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic biosignatures in the carbonaceous matter of ancient cherts: comparison with carbonaceous meteorites.
    Gourier D; Delpoux O; Binet L; Vezin H
    Astrobiology; 2013 Oct; 13(10):932-47. PubMed ID: 24093546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfossils in stromatolitic cherts from the upper proterozoic Min'yar formation, southern Ural Mountains, USSR.
    Nyberg AV; Schopf JW
    J Paleontol; 1984 May; 58(3):738-72. PubMed ID: 11541991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the application of Raman spectroscopy to the detection of traces of life.
    Marshall CP; Edwards HG; Jehlicka J
    Astrobiology; 2010 Mar; 10(2):229-43. PubMed ID: 20402584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.
    Bourbin M; Gourier D; Derenne S; Binet L; Le Du Y; Westall F; Kremer B; Gautret P
    Astrobiology; 2013 Feb; 13(2):151-62. PubMed ID: 23397956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Rhynie Chert, Scotland, and the search for life on Mars.
    Preston LJ; Genge MJ
    Astrobiology; 2010 Jun; 10(5):549-60. PubMed ID: 20624061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological preservation of carbonaceous plant fossils in blueschist metamorphic rocks from New Zealand.
    Galvez ME; Beyssac O; Benzerara K; Bernard S; Menguy N; Cox SC; Martinez I; Johnston MR; Brown GE
    Geobiology; 2012 Mar; 10(2):118-29. PubMed ID: 22299653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.
    Bower DM; Steele A; Fries MD; Kater L
    Astrobiology; 2013 Jan; 13(1):103-13. PubMed ID: 23268624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proterozoic stromatolitic microbiotas of the 1400-1500 Ma-old Gaoyuzhuang formation near Jixian, northern China.
    Schopf JW; Wei-Qing Z; Zhao-Liang X; Jen H
    Precambrian Res; 1984; 24():335-49. PubMed ID: 11541987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple generations of carbon in the apex chert and implications for preservation of microfossils.
    Marshall AO; Emry JR; Marshall CP
    Astrobiology; 2012 Feb; 12(2):160-6. PubMed ID: 22313376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular fingerprints resolve affinities of Rhynie chert organic fossils.
    Loron CC; Rodriguez Dzul E; Orr PJ; Gromov AV; Fraser NC; McMahon S
    Nat Commun; 2023 Mar; 14(1):1387. PubMed ID: 36914650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and chemical heterogeneity of Proterozoic organic microfossils of the ca. 1 Ga old Angmaat Formation, Baffin Island, Canada.
    Nabhan S; Kah LC; Mishra B; Pollok K; Manning-Berg AR; van Zuilen MA
    Geobiology; 2021 Nov; 19(6):557-584. PubMed ID: 34296512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.