These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3351 related articles for article (PubMed ID: 26496667)
21. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. Zhang X; Wang A; Liu X; Luo J Acc Chem Res; 2019 Nov; 52(11):3223-3232. PubMed ID: 31657541 [TBL] [Abstract][Full Text] [Related]
22. Regulating Lithium Electrodeposition with Laser-Structured Current Collectors for Stable Lithium Metal Batteries. Dong W; Wang K; Han J; Yu Y; Liu G; Li C; Tong P; Li W; Yang C; Lu Z ACS Appl Mater Interfaces; 2021 Feb; 13(7):8417-8425. PubMed ID: 33587588 [TBL] [Abstract][Full Text] [Related]
24. A review of improvements on electric vehicle battery. Koech AK; Mwandila G; Mulolani F Heliyon; 2024 Aug; 10(15):e34806. PubMed ID: 39170484 [TBL] [Abstract][Full Text] [Related]
25. A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Hagos TM; Bezabh HK; Huang CJ; Jiang SK; Su WN; Hwang BJ Acc Chem Res; 2021 Dec; 54(24):4474-4485. PubMed ID: 34763425 [TBL] [Abstract][Full Text] [Related]
26. Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes. Wen K; Wang Y; Chen S; Wang X; Zhang S; Archer LA ACS Appl Mater Interfaces; 2018 Jun; 10(24):20412-20421. PubMed ID: 29856597 [TBL] [Abstract][Full Text] [Related]
27. Emerging Strategies for Gel Polymer Electrolytes with Improved Dual-Electrode Side Regulation Mechanisms for Lithium-Sulfur Batteries. Cui Y; Li J; Yuan X; Liu J; Zhang H; Wu H; Cai Y Chem Asian J; 2022 Nov; 17(21):e202200746. PubMed ID: 36031710 [TBL] [Abstract][Full Text] [Related]
28. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces. Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166 [TBL] [Abstract][Full Text] [Related]
29. In-Situ Polymerized Solid/Quasi-Solid Polymer Electrolyte for Lithium-Metal Batteries: Recent Progress and Perspectives. Zhang H; Xu X; Fan W; Zhao J; Huo Y Chemistry; 2024 Oct; ():e202402798. PubMed ID: 39392068 [TBL] [Abstract][Full Text] [Related]
30. Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Li X; Zheng Y; Pan Q; Li CY ACS Appl Mater Interfaces; 2019 Sep; 11(38):34904-34912. PubMed ID: 31474106 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Wei S; Choudhury S; Tu Z; Zhang K; Archer LA Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617 [TBL] [Abstract][Full Text] [Related]
33. A review of recent developments in rechargeable lithium-sulfur batteries. Kang W; Deng N; Ju J; Li Q; Wu D; Ma X; Li L; Naebe M; Cheng B Nanoscale; 2016 Sep; 8(37):16541-16588. PubMed ID: 27714087 [TBL] [Abstract][Full Text] [Related]
34. Dendrite-Free Polygonal Sodium Deposition with Excellent Interfacial Stability in a NaAlCl₄-2SO₂ Inorganic Electrolyte. Song J; Jeong G; Lee AJ; Park JH; Kim H; Kim YJ ACS Appl Mater Interfaces; 2015 Dec; 7(49):27206-14. PubMed ID: 26598924 [TBL] [Abstract][Full Text] [Related]
35. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Shen X; Li Y; Qian T; Liu J; Zhou J; Yan C; Goodenough JB Nat Commun; 2019 Feb; 10(1):900. PubMed ID: 30796214 [TBL] [Abstract][Full Text] [Related]
36. High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. Hyun WJ; de Moraes ACM; Lim JM; Downing JR; Park KY; Tan MTZ; Hersam MC ACS Nano; 2019 Aug; 13(8):9664-9672. PubMed ID: 31318524 [TBL] [Abstract][Full Text] [Related]
37. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
38. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099 [TBL] [Abstract][Full Text] [Related]
39. A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries. Shin DM; Bachman JE; Taylor MK; Kamcev J; Park JG; Ziebel ME; Velasquez E; Jarenwattananon NN; Sethi GK; Cui Y; Long JR Adv Mater; 2020 Mar; 32(10):e1905771. PubMed ID: 31985110 [TBL] [Abstract][Full Text] [Related]
40. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective. Kar M; Simons TJ; Forsyth M; MacFarlane DR Phys Chem Chem Phys; 2014 Sep; 16(35):18658-74. PubMed ID: 25093926 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]