BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26496706)

  • 21. Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs.
    Guo Z; Stiller JW
    BMC Genomics; 2004 Sep; 5():69. PubMed ID: 15380029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II.
    MacKellar AL; Greenleaf AL
    J Biol Chem; 2011 Oct; 286(42):36385-95. PubMed ID: 21856751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sub1/PC4, a multifaceted factor: from transcription to genome stability.
    Garavís M; Calvo O
    Curr Genet; 2017 Dec; 63(6):1023-1035. PubMed ID: 28567479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TORC1 signaling modulates Cdk8-dependent GAL gene expression in Saccharomyces cerevisiae.
    Horvath R; Hawe N; Lam C; Mestnikov K; Eji-Lasisi M; Rohde J; Sadowski I
    Genetics; 2021 Dec; 219(4):. PubMed ID: 34849833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fus3 controls Ty1 transpositional dormancy through the invasive growth MAPK pathway.
    Conte D; Curcio MJ
    Mol Microbiol; 2000 Jan; 35(2):415-27. PubMed ID: 10652102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency.
    Servant G; Pennetier C; Lesage P
    Mol Cell Biol; 2008 Sep; 28(17):5543-54. PubMed ID: 18591253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae.
    Berretta J; Pinskaya M; Morillon A
    Genes Dev; 2008 Mar; 22(5):615-26. PubMed ID: 18316478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MPK1/SLT2 Links Multiple Stress Responses with Gene Expression in Budding Yeast by Phosphorylating Tyr1 of the RNAP II CTD.
    Yurko N; Liu X; Yamazaki T; Hoque M; Tian B; Manley JL
    Mol Cell; 2017 Dec; 68(5):913-925.e3. PubMed ID: 29220656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Ssu72 phosphatase mediates the RNA polymerase II initiation-elongation transition.
    Rosado-Lugo JD; Hampsey M
    J Biol Chem; 2014 Dec; 289(49):33916-26. PubMed ID: 25339178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation.
    Kizer KO; Phatnani HP; Shibata Y; Hall H; Greenleaf AL; Strahl BD
    Mol Cell Biol; 2005 Apr; 25(8):3305-16. PubMed ID: 15798214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation.
    Mosley AL; Pattenden SG; Carey M; Venkatesh S; Gilmore JM; Florens L; Workman JL; Washburn MP
    Mol Cell; 2009 Apr; 34(2):168-78. PubMed ID: 19394294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation.
    Dronamraju R; Strahl BD
    Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.
    Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL
    Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II.
    Kim M; Krogan NJ; Vasiljeva L; Rando OJ; Nedea E; Greenblatt JF; Buratowski S
    Nature; 2004 Nov; 432(7016):517-22. PubMed ID: 15565157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms.
    Heise B; van der Felden J; Kern S; Malcher M; Brückner S; Mösch HU
    Eukaryot Cell; 2010 Apr; 9(4):514-31. PubMed ID: 20118212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IMP dehydrogenase is recruited to the transcription complex through serine 2 phosphorylation of RNA polymerase II.
    Park JH; Ahn SH
    Biochem Biophys Res Commun; 2010 Feb; 392(4):588-92. PubMed ID: 20097157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII.
    Jiang H; Wolgast M; Beebe LM; Reese JC
    Genes Dev; 2019 Jun; 33(11-12):705-717. PubMed ID: 30948432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
    Heidemann M; Hintermair C; Voß K; Eick D
    Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rrm3 protects the Saccharomyces cerevisiae genome from instability at nascent sites of retrotransposition.
    Stamenova R; Maxwell PH; Kenny AE; Curcio MJ
    Genetics; 2009 Jul; 182(3):711-23. PubMed ID: 19414561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon.
    Baller JA; Gao J; Stamenova R; Curcio MJ; Voytas DF
    Genome Res; 2012 Apr; 22(4):704-13. PubMed ID: 22219511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.