BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26496754)

  • 1. From gene editing to genome reconstitution: evolving techniques in yeast.
    Li C; Lou HQ
    Yi Chuan; 2015 Oct; 37(10):1021-8. PubMed ID: 26496754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing.
    Storici F; Snipe JR; Chan GK; Gordenin DA; Resnick MA
    Mol Cell Biol; 2006 Oct; 26(20):7645-57. PubMed ID: 16908537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast.
    Prudden J; Evans JS; Hussey SP; Deans B; O'Neill P; Thacker J; Humphrey T
    EMBO J; 2003 Mar; 22(6):1419-30. PubMed ID: 12628934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
    Bao Z; HamediRad M; Xue P; Xiao H; Tasan I; Chao R; Liang J; Zhao H
    Nat Biotechnol; 2018 Jul; 36(6):505-508. PubMed ID: 29734295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Molecular-genetic analysis of dual-stranded DNA break repair in saccharomyces yeasts].
    Glazer VM; Glazunov AV
    Genetika; 1999 Nov; 35(11):1449-69. PubMed ID: 10624571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.
    Miyazaki T; Bressan DA; Shinohara M; Haber JE; Shinohara A
    EMBO J; 2004 Feb; 23(4):939-49. PubMed ID: 14765116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae.
    Sugiyama M; Yamagishi K; Kim YH; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1045-52. PubMed ID: 19685240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical monitoring of HO-induced homologous recombination.
    Holmes A; Haber JE
    Methods Mol Biol; 1999; 113():403-15. PubMed ID: 10443437
    [No Abstract]   [Full Text] [Related]  

  • 11. Reshuffling yeast chromosomes with CRISPR/Cas9.
    Fleiss A; O'Donnell S; Fournier T; Lu W; Agier N; Delmas S; Schacherer J; Fischer G
    PLoS Genet; 2019 Aug; 15(8):e1008332. PubMed ID: 31465441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic genomes engineered by SCRaMbLEing.
    Zhang F; Voytas DF
    Sci China Life Sci; 2018 Aug; 61(8):975-977. PubMed ID: 29951952
    [No Abstract]   [Full Text] [Related]  

  • 13. Non-homologous end-joining factors of Saccharomyces cerevisiae.
    Dudásová Z; Dudás A; Chovanec M
    FEMS Microbiol Rev; 2004 Nov; 28(5):581-601. PubMed ID: 15539075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DSB repair: the yeast paradigm.
    Aylon Y; Kupiec M
    DNA Repair (Amst); 2004; 3(8-9):797-815. PubMed ID: 15279765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A model system for the study of repair of DNA double-strand breaks in Saccharomyces cerevisiae].
    Glazunov AV; Glazer VM; Perera DR; Boreĭko AV
    Mol Gen Mikrobiol Virusol; 1987 Aug; (8):19-25. PubMed ID: 2825006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.
    Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ
    J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways of DNA double-strand break repair and their impact on the prevention and formation of chromosomal aberrations.
    Pfeiffer P; Goedecke W; Kuhfittig-Kulle S; Obe G
    Cytogenet Genome Res; 2004; 104(1-4):7-13. PubMed ID: 15162009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae.
    Lettier G; Feng Q; de Mayolo AA; Erdeniz N; Reid RJ; Lisby M; Mortensen UH; Rothstein R
    PLoS Genet; 2006 Nov; 2(11):e194. PubMed ID: 17096599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae.
    Li ZH; Liu M; Lyu XM; Wang FQ; Wei DZ
    J Basic Microbiol; 2018 Dec; 58(12):1100-1104. PubMed ID: 30198089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.
    Ricchetti M; Fairhead C; Dujon B
    Nature; 1999 Nov; 402(6757):96-100. PubMed ID: 10573425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.