These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
816 related articles for article (PubMed ID: 26496960)
1. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Quentin AG; Crous KY; Barton CV; Ellsworth DS Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960 [TBL] [Abstract][Full Text] [Related]
2. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Crous KY; Quentin AG; Lin YS; Medlyn BE; Williams DG; Barton CV; Ellsworth DS Glob Chang Biol; 2013 Dec; 19(12):3790-807. PubMed ID: 23824839 [TBL] [Abstract][Full Text] [Related]
3. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
4. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature. Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104 [TBL] [Abstract][Full Text] [Related]
5. Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus. Sharwood RE; Crous KY; Whitney SM; Ellsworth DS; Ghannoum O J Exp Bot; 2017 Feb; 68(5):1157-1167. PubMed ID: 28064178 [TBL] [Abstract][Full Text] [Related]
6. Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus. Crous KY; Wallin G; Atkin OK; Uddling J; Af Ekenstam A Tree Physiol; 2017 Aug; 37(8):1069-1083. PubMed ID: 28541536 [TBL] [Abstract][Full Text] [Related]
7. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis. Aspinwall MJ; Blackman CJ; de Dios VR; Busch FA; Rymer PD; Loik ME; Drake JE; Pfautsch S; Smith RA; Tjoelker MG; Tissue DT Tree Physiol; 2018 Sep; 38(9):1286-1301. PubMed ID: 29741732 [TBL] [Abstract][Full Text] [Related]
8. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. Aspinwall MJ; Drake JE; Campany C; Vårhammar A; Ghannoum O; Tissue DT; Reich PB; Tjoelker MG New Phytol; 2016 Oct; 212(2):354-67. PubMed ID: 27284963 [TBL] [Abstract][Full Text] [Related]
9. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Duan H; Amthor JS; Duursma RA; O'Grady AP; Choat B; Tissue DT Tree Physiol; 2013 Aug; 33(8):779-92. PubMed ID: 23963410 [TBL] [Abstract][Full Text] [Related]
10. Interacting effects of elevated CO2 and weather variability on photosynthesis of mature boreal Norway spruce agree with biochemical model predictions. Uddling J; Wallin G Tree Physiol; 2012 Dec; 32(12):1509-21. PubMed ID: 23042768 [TBL] [Abstract][Full Text] [Related]
11. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
12. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Apgaua DMG; Tng DYP; Forbes SJ; Ishida YF; Vogado NO; Cernusak LA; Laurance SGW Tree Physiol; 2019 Dec; 39(11):1806-1820. PubMed ID: 31768554 [TBL] [Abstract][Full Text] [Related]
13. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill. Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831 [TBL] [Abstract][Full Text] [Related]
14. Drought × CO2 interactions in trees: a test of the low-intercellular CO2 concentration (Ci ) mechanism. Kelly JW; Duursma RA; Atwell BJ; Tissue DT; Medlyn BE New Phytol; 2016 Mar; 209(4):1600-12. PubMed ID: 26526873 [TBL] [Abstract][Full Text] [Related]
16. Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. Alonso A; Pérez P; Morcuende R; Martinez-Carrasco R Physiol Plant; 2008 Jan; 132(1):102-12. PubMed ID: 18251874 [TBL] [Abstract][Full Text] [Related]
17. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures. Anderson LJ; Cipollini D Am J Bot; 2013 Aug; 100(8):1544-54. PubMed ID: 23857735 [TBL] [Abstract][Full Text] [Related]
19. Compensatory responses of CO Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973 [TBL] [Abstract][Full Text] [Related]
20. No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2. Zotz G; Pepin S; Körner C Plant Biol (Stuttg); 2005 Jul; 7(4):369-74. PubMed ID: 16025409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]