BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 26497023)

  • 1. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems.
    Takakusaki K; Chiba R; Nozu T; Okumura T
    J Neural Transm (Vienna); 2016 Jul; 123(7):695-729. PubMed ID: 26497023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction.
    Takakusaki K; Habaguchi T; Ohtinata-Sugimoto J; Saitoh K; Sakamoto T
    Neuroscience; 2003; 119(1):293-308. PubMed ID: 12763089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats.
    Takakusaki K; Obara K; Nozu T; Okumura T
    Arch Ital Biol; 2011 Dec; 149(4):385-405. PubMed ID: 22205597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of motor behavior by the mesencephalic locomotor region.
    Dautan D; Kovács A; Bayasgalan T; Diaz-Acevedo MA; Pal B; Mena-Segovia J
    Cell Rep; 2021 Aug; 36(8):109594. PubMed ID: 34433068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat.
    Mori S
    Jpn J Physiol; 1989; 39(6):785-809. PubMed ID: 2698966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forebrain control of locomotor behaviors.
    Takakusaki K
    Brain Res Rev; 2008 Jan; 57(1):192-8. PubMed ID: 17764749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat.
    Rye DB; Lee HJ; Saper CB; Wainer BH
    J Comp Neurol; 1988 Mar; 269(3):315-41. PubMed ID: 2453532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy.
    Takakusaki K; Takahashi K; Saitoh K; Harada H; Okumura T; Kayama Y; Koyama Y
    J Physiol; 2005 Nov; 568(Pt 3):1003-20. PubMed ID: 16123113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates.
    Goetz L; Piallat B; Bhattacharjee M; Mathieu H; David O; Chabardès S
    J Neurosci; 2016 May; 36(18):4917-29. PubMed ID: 27147647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine tegmentum.
    Mori S; Nishimura H; Kurakami C; Yamamura T; Aoki M
    J Neurophysiol; 1978 Nov; 41(6):1580-91. PubMed ID: 731291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways.
    Xiao C; Cho JR; Zhou C; Treweek JB; Chan K; McKinney SL; Yang B; Gradinaru V
    Neuron; 2016 Apr; 90(2):333-47. PubMed ID: 27100197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pedunculopontine stimulation induces prolonged activation of pontine reticular neurons.
    Garcia-Rill E; Skinner RD; Miyazato H; Homma Y
    Neuroscience; 2001; 104(2):455-65. PubMed ID: 11377847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in neuron activity in the dorsolateral part of the pons during stimulation of areas of the brainstem inhibiting movement and muscle tone.
    Mileikovskii BYU ; Kiyashchenko LI; Titkov ES
    Neurosci Behav Physiol; 2001; 31(6):641-6. PubMed ID: 11766905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging human supraspinal locomotor centers in brainstem and cerebellum.
    Jahn K; Deutschländer A; Stephan T; Kalla R; Wiesmann M; Strupp M; Brandt T
    Neuroimage; 2008 Jan; 39(2):786-92. PubMed ID: 18029199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement- and behavioral state-dependent activity of pontine reticulospinal neurons.
    Thankachan S; Fuller PM; Lu J
    Neuroscience; 2012 Sep; 221():125-39. PubMed ID: 22796072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats.
    Takakusaki K; Saitoh K; Harada H; Okumura T; Sakamoto T
    Neuroscience; 2004; 124(1):207-20. PubMed ID: 14960352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats.
    Mori S; Matsui T; Kuze B; Asanome M; Nakajima K; Matsuyama K
    Ann N Y Acad Sci; 1998 Nov; 860():94-105. PubMed ID: 9928304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pedunculopontine nucleus: functional organization and clinical implications.
    Benarroch EE
    Neurology; 2013 Mar; 80(12):1148-55. PubMed ID: 23509047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anterior and posterior pedunculopontine tegmental nucleus are involved in behavior and neuronal activity of the cuneiform and entopeduncular nuclei.
    Jin X; Schwabe K; Krauss JK; Alam M
    Neuroscience; 2016 May; 322():39-53. PubMed ID: 26880033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.