BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26497087)

  • 21. Aqueous poly(amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study.
    Kavyani S; Amjad-Iranagh S; Modarress H
    J Phys Chem B; 2014 Mar; 118(12):3257-66. PubMed ID: 24588382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noninvasive MR thermometry using paramagnetic lanthanide complexes of 1,4,7,10-tetraazacyclodoecane-alpha,alpha',alpha'',alpha'''-tetramethyl-1,4,7,10-tetraacetic acid (DOTMA4-).
    Hekmatyar SK; Hopewell P; Pakin SK; Babsky A; Bansal N
    Magn Reson Med; 2005 Feb; 53(2):294-303. PubMed ID: 15678553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macromolecular and dendrimer-based magnetic resonance contrast agents.
    Bumb A; Brechbiel MW; Choyke P
    Acta Radiol; 2010 Sep; 51(7):751-67. PubMed ID: 20590365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metallodendrimers and dendrimer nanocomposites.
    Tang YH; Huang AY; Chen PY; Chen HT; Kao CL
    Curr Pharm Des; 2011; 17(22):2308-30. PubMed ID: 21736548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xenon biosensor amplification via dendrimer-cage supramolecular constructs.
    Mynar JL; Lowery TJ; Wemmer DE; Pines A; Fréchet JM
    J Am Chem Soc; 2006 May; 128(19):6334-5. PubMed ID: 16683795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent.
    Han L; Li J; Huang S; Huang R; Liu S; Hu X; Yi P; Shan D; Wang X; Lei H; Jiang C
    Biomaterials; 2011 Apr; 32(11):2989-98. PubMed ID: 21277017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PAMAM dendrimers conjugated with an uncharged gadolinium(III) chelate with a fast water exchange: the influence of chelate charge on rotational dynamics.
    Polásek M; Hermann P; Peters JA; Geraldes CF; Lukes I
    Bioconjug Chem; 2009 Nov; 20(11):2142-53. PubMed ID: 19883075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores.
    Kobayashi H; Kawamoto S; Jo SK; Bryant HL; Brechbiel MW; Star RA
    Bioconjug Chem; 2003; 14(2):388-94. PubMed ID: 12643749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PEGylated, NH2-terminated PAMAM dendrimers: a microscopic view from atomistic computer simulations.
    Yang L; da Rocha SR
    Mol Pharm; 2014 May; 11(5):1459-70. PubMed ID: 24679335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography.
    Kobayashi H; Kawamoto S; Choyke PL; Sato N; Knopp MV; Star RA; Waldmann TA; Tagaya Y; Brechbiel MW
    Magn Reson Med; 2003 Oct; 50(4):758-66. PubMed ID: 14523962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents.
    Laus S; Sour A; Ruloff R; Tóth E; Merbach AE
    Chemistry; 2005 May; 11(10):3064-76. PubMed ID: 15776490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Present and the Future of Degradable Dendrimers and Derivatives in Theranostics.
    Leiro V; Garcia JP; Tomás H; Pêgo AP
    Bioconjug Chem; 2015 Jul; 26(7):1182-97. PubMed ID: 25826129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.
    Ciolkowski M; Rozanek M; Bryszewska M; Klajnert B
    Biochim Biophys Acta; 2013 Oct; 1834(10):1982-7. PubMed ID: 23851144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery.
    Gu Z; Wang M; Fang Q; Zheng H; Wu F; Lin D; Xu Y; Jin Y
    Drug Dev Ind Pharm; 2015 May; 41(5):812-8. PubMed ID: 24745851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates.
    Bryant LH; Brechbiel MW; Wu C; Bulte JW; Herynek V; Frank JA
    J Magn Reson Imaging; 1999 Feb; 9(2):348-52. PubMed ID: 10077036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards longitudinal mapping of extracellular pH in gliomas.
    Huang Y; Coman D; Herman P; Rao JU; Maritim S; Hyder F
    NMR Biomed; 2016 Oct; 29(10):1364-72. PubMed ID: 27472471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector.
    Zeng X; Pan S; Li J; Wang C; Wen Y; Wu H; Wang C; Wu C; Feng M
    Nanotechnology; 2011 Sep; 22(37):375102. PubMed ID: 21852739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer.
    Oddone N; Lecot N; Fernández M; Rodriguez-Haralambides A; Cabral P; Cerecetto H; Benech JC
    J Nanobiotechnology; 2016 Jun; 14(1):45. PubMed ID: 27297021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved tumor targetability of Tat-conjugated PAMAM dendrimers as a novel nanosized anti-tumor drug carrier.
    Yan C; Gu J; Hou D; Jing H; Wang J; Guo Y; Katsumi H; Sakane T; Yamamoto A
    Drug Dev Ind Pharm; 2015 Apr; 41(4):617-22. PubMed ID: 24564798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas.
    Coman D; Huang Y; Rao JU; De Feyter HM; Rothman DL; Juchem C; Hyder F
    NMR Biomed; 2016 Mar; 29(3):309-19. PubMed ID: 26752688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.