BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26497105)

  • 1. Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance.
    Bobeck EN; Ingram SL; Hermes SM; Aicher SA; Morgan MM
    Behav Brain Res; 2016 Feb; 298(Pt B):17-24. PubMed ID: 26497105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in functional selectivity of morphine with the development of antinociceptive tolerance.
    Macey TA; Bobeck EN; Suchland KL; Morgan MM; Ingram SL
    Br J Pharmacol; 2015 Jan; 172(2):549-61. PubMed ID: 24666417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular signal-regulated kinase 1/2 activation counteracts morphine tolerance in the periaqueductal gray of the rat.
    Macey TA; Bobeck EN; Hegarty DM; Aicher SA; Ingram SL; Morgan MM
    J Pharmacol Exp Ther; 2009 Nov; 331(2):412-8. PubMed ID: 19684256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential development of antinociceptive tolerance to morphine and fentanyl is not linked to efficacy in the ventrolateral periaqueductal gray of the rat.
    Bobeck EN; Haseman RA; Hong D; Ingram SL; Morgan MM
    J Pain; 2012 Aug; 13(8):799-807. PubMed ID: 22766006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opioid receptor internalization contributes to dermorphin-mediated antinociception.
    Macey TA; Ingram SL; Bobeck EN; Hegarty DM; Aicher SA; Arttamangkul S; Morgan MM
    Neuroscience; 2010 Jun; 168(2):543-50. PubMed ID: 20394808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of Antinociceptive Cross-Tolerance With Co-Administration of Morphine and Fentanyl Into the Periaqueductal Gray of Male Sprague-Dawley Rats.
    Bobeck EN; Schoo SM; Ingram SL; Morgan MM
    J Pain; 2019 Sep; 20(9):1040-1047. PubMed ID: 30853505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analgesic tolerance to microinjection of the micro-opioid agonist DAMGO into the ventrolateral periaqueductal gray.
    Meyer PJ; Fossum EN; Ingram SL; Morgan MM
    Neuropharmacology; 2007 Jun; 52(8):1580-5. PubMed ID: 17445843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug dependent sex-differences in periaqueducatal gray mediated antinociception in the rat.
    Bobeck EN; McNeal AL; Morgan MM
    Pain; 2009 Dec; 147(1-3):210-6. PubMed ID: 19796879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in antinociceptive signalling mechanisms following morphine and fentanyl microinjections into the rat periaqueductal gray.
    Morgan MM; Tran A; Wescom RL; Bobeck EN
    Eur J Pain; 2020 Mar; 24(3):617-624. PubMed ID: 31785128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionally selective signaling for morphine and fentanyl antinociception and tolerance mediated by the rat periaqueductal gray.
    Morgan MM; Reid RA; Saville KA
    PLoS One; 2014; 9(12):e114269. PubMed ID: 25503060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic antinociceptive actions and tolerance development produced by morphine-fentanyl coadministration: correlation with μ-opioid receptor internalization.
    Silva-Moreno A; Gonzalez-Espinosa C; León-Olea M; Cruz SL
    Eur J Pharmacol; 2012 Jan; 674(2-3):239-47. PubMed ID: 22079772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons.
    Rodríguez-Muñoz M; de la Torre-Madrid E; Gaitán G; Sánchez-Blázquez P; Garzón J
    Cell Signal; 2007 Dec; 19(12):2558-71. PubMed ID: 17825524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness for the combination of G-protein- and β-arrestin-biased ligands of μ-opioid receptors: Prevention of antinociceptive tolerance.
    Mori T; Kuzumaki N; Arima T; Narita M; Tateishi R; Kondo T; Hamada Y; Kuwata H; Kawata M; Yamazaki M; Sugita K; Matsuzawa A; Baba K; Yamauchi T; Higashiyama K; Nonaka M; Miyano K; Uezono Y; Narita M
    Mol Pain; 2017; 13():1744806917740030. PubMed ID: 29056067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The functional antiopioid action of the ventrolateral periaqueductal gray nociceptin/orphanin FQ and nociceptin receptor system underlies DAMGO analgesic tolerance.
    Parenti C; Scoto GM
    Pharmacology; 2010; 86(3):138-44. PubMed ID: 20689345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A6V polymorphism of the human μ-opioid receptor decreases signalling of morphine and endogenous opioids in vitro.
    Knapman A; Santiago M; Connor M
    Br J Pharmacol; 2015 May; 172(9):2258-72. PubMed ID: 25521224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonizing effect of protein kinase C activation on the mu-opioid agonist-induced inhibition of high voltage-activated calcium current in rat periaqueductal gray neuron.
    Cho YW; Han SH; Min BI; Rhee JS; Akaike N
    Brain Res; 2001 Oct; 916(1-2):61-9. PubMed ID: 11597591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic inflammatory pain prevents tolerance to the antinociceptive effect of morphine microinjected into the ventrolateral periaqueductal gray of the rat.
    Mehalick ML; Ingram SL; Aicher SA; Morgan MM
    J Pain; 2013 Dec; 14(12):1601-10. PubMed ID: 24161274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons.
    Fyfe LW; Cleary DR; Macey TA; Morgan MM; Ingram SL
    J Pharmacol Exp Ther; 2010 Dec; 335(3):674-80. PubMed ID: 20739455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C-mediated inhibition of mu-opioid receptor internalization and its involvement in the development of acute tolerance to peripheral mu-agonist analgesia.
    Ueda H; Inoue M; Matsumoto T
    J Neurosci; 2001 May; 21(9):2967-73. PubMed ID: 11312280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats.
    Lane DA; Patel PA; Morgan MM
    Neuroscience; 2005; 135(1):227-34. PubMed ID: 16084660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.