BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26497358)

  • 1. Hot-Injection Synthesis of Cu-Doped Cu₂ZnSnSe₄ Nanocrystals to Reach Thermoelectric zT of 0.70 at 450°C.
    Chen D; Zhao Y; Chen Y; Wang B; Wang Y; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24403-8. PubMed ID: 26497358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1-x)GeSe4.
    Zeier WG; LaLonde A; Gibbs ZM; Heinrich CP; Panthöfer M; Snyder GJ; Tremel W
    J Am Chem Soc; 2012 Apr; 134(16):7147-54. PubMed ID: 22480346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal Synthesis of Te-Doped Bi Nanoparticles: Low-Temperature Charge Transport and Thermoelectric Properties.
    Gu DH; Jo S; Jeong H; Ban HW; Park SH; Heo SH; Kim F; Jang JI; Lee JE; Son JS
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19143-19151. PubMed ID: 28508649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials.
    Hwang JY; Mun HA; Kim SI; Lee KM; Kim J; Lee KH; Kim SW
    Inorg Chem; 2014 Dec; 53(24):12732-8. PubMed ID: 25402498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanochemical Synthesis of Sustainable Ternary and Quaternary Nanostructured Cu
    Nautiyal H; Lohani K; Mukherjee B; Isotta E; Malagutti MA; Ataollahi N; Pallecchi I; Putti M; Misture ST; Rebuffi L; Scardi P
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance.
    Li D; Li R; Qin XY; Song CJ; Xin HX; Wang L; Zhang J; Guo GL; Zou TH; Liu YF; Zhu XG
    Dalton Trans; 2014 Jan; 43(4):1888-96. PubMed ID: 24264386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires.
    Li ZQ; Shi JH; Liu QQ; Chen YW; Sun Z; Yang Z; Huang SM
    Nanotechnology; 2011 Jul; 22(26):265615. PubMed ID: 21586809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials.
    Gao H; Zhu T; Zhao X; Deng Y
    Dalton Trans; 2014 Oct; 43(37):14072-8. PubMed ID: 25118956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications.
    Chen D; Zhao Y; Chen Y; Wang B; Chen H; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3224-30. PubMed ID: 25607423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric and Photovoltaic Properties of Mn-Doped Kesterite Cu
    Jamwal G; Warish M; Muthiah S; Chakravarty S; Jakhar N; Kandasami A; Niazi A
    Inorg Chem; 2022 Oct; 61(41):16390-16404. PubMed ID: 36197024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi.
    Srinivasan B; Boussard-Pledel C; Dorcet V; Samanta M; Biswas K; Lefèvre R; Gascoin F; Cheviré F; Tricot S; Reece M; Bureau B
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
    Rhyee JS; Kim JH
    Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit.
    Fan FJ; Yu B; Wang YX; Zhu YL; Liu XJ; Yu SH; Ren Z
    J Am Chem Soc; 2011 Oct; 133(40):15910-3. PubMed ID: 21910492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic optimization of thermoelectric performance in earth-abundant Cu
    Sharma SD; Bayikadi K; Raman S; Neeleshwar S
    Nanotechnology; 2020 Sep; 31(36):365402. PubMed ID: 32413881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics.
    Li F; Li JF; Li JH; Yao FZ
    Phys Chem Chem Phys; 2012 Sep; 14(35):12213-20. PubMed ID: 22858990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoelectric properties of the quaternary chalcogenides BaCu5.9STe6 and BaCu5.9SeTe6.
    Oudah M; Kleinke KM; Kleinke H
    Inorg Chem; 2015 Feb; 54(3):845-9. PubMed ID: 25299429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced thermoelectric properties of Zn-doped GaSb nanocomposites.
    Fu Q; Wu Z; Li J
    RSC Adv; 2020 Jul; 10(47):28415-28421. PubMed ID: 35519127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.
    Poudel B; Hao Q; Ma Y; Lan Y; Minnich A; Yu B; Yan X; Wang D; Muto A; Vashaee D; Chen X; Liu J; Dresselhaus MS; Chen G; Ren Z
    Science; 2008 May; 320(5876):634-8. PubMed ID: 18356488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High thermoelectric performance of Cu
    Xie D; Zhang B; Zhang A; Chen Y; Yan Y; Yang H; Wang G; Wang G; Han X; Han G; Lu X; Zhou X
    Nanoscale; 2018 Aug; 10(30):14546-14553. PubMed ID: 30024012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.