BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26497400)

  • 1. A Novel Soluble Peptide with pH-Responsive Membrane Insertion.
    Nguyen VP; Alves DS; Scott HL; Davis FL; Barrera FN
    Biochemistry; 2015 Nov; 54(43):6567-75. PubMed ID: 26497400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insights into the pH-dependent membrane peptide ATRAM.
    Nguyen VP; Palanikumar L; Kennel SJ; Alves DS; Ye Y; Wall JS; Magzoub M; Barrera FN
    J Control Release; 2019 Mar; 298():142-153. PubMed ID: 30763623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Phosphatidylserine on a pH-Responsive Peptide Is Defined by Its Noninserting End.
    Nguyen VP; Dixson AC; Barrera FN
    Biophys J; 2019 Aug; 117(4):659-667. PubMed ID: 31400916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design and experimental characterization of peptides intended for pH-dependent membrane insertion and pore formation.
    Zhang Y; Bartz R; Grigoryan G; Bryant M; Aaronson J; Beck S; Innocent N; Klein L; Procopio W; Tucker T; Jadhav V; Tellers DM; DeGrado WF
    ACS Chem Biol; 2015 Apr; 10(4):1082-93. PubMed ID: 25630033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄.
    Macháň R; Jurkiewicz P; Olżyńska A; Olšinová M; Cebecauer M; Marquette A; Bechinger B; Hof M
    Langmuir; 2014 Jun; 30(21):6171-9. PubMed ID: 24807004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.
    Kashiwada A; Yamane I; Tsuboi M; Ando S; Matsuda K
    Langmuir; 2012 Jan; 28(4):2299-305. PubMed ID: 22204500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting acidity in diseased tissues: mechanism and applications of the membrane-inserting peptide, pHLIP.
    Deacon JC; Engelman DM; Barrera FN
    Arch Biochem Biophys; 2015 Jan; 565():40-8. PubMed ID: 25444855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural effects and lipid membrane interactions of the pH-responsive GALA peptide with fatty acid acylation.
    Lin BF; Missirlis D; Krogstad DV; Tirrell M
    Biochemistry; 2012 Jun; 51(23):4658-68. PubMed ID: 22591394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo.
    Andreev OA; Dupuy AD; Segala M; Sandugu S; Serra DA; Chichester CO; Engelman DM; Reshetnyak YK
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7893-8. PubMed ID: 17483464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.
    Wiedman G; Wimley WC; Hristova K
    Biochim Biophys Acta; 2015 Apr; 1848(4):951-7. PubMed ID: 25572997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules.
    De Coupade C; Fittipaldi A; Chagnas V; Michel M; Carlier S; Tasciotti E; Darmon A; Ravel D; Kearsey J; Giacca M; Cailler F
    Biochem J; 2005 Sep; 390(Pt 2):407-18. PubMed ID: 15859953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-Dependent conformational changes and topology of a herpesvirus translocating peptide in a membrane-mimetic environment.
    Schievano E; Calisti T; Menegazzo I; Battistutta R; Peggion E; Mammi S; Palù G; Loregian A
    Biochemistry; 2004 Jul; 43(29):9343-51. PubMed ID: 15260477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the Membrane Translocation pK of the pH-Low Insertion Peptide.
    Scott HL; Westerfield JM; Barrera FN
    Biophys J; 2017 Aug; 113(4):869-879. PubMed ID: 28834723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The negative charge of the membrane has opposite effects on the membrane entry and exit of pH-low insertion peptide.
    Scott HL; Nguyen VP; Alves DS; Davis FL; Booth KR; Bryner J; Barrera FN
    Biochemistry; 2015 Mar; 54(9):1709-12. PubMed ID: 25692747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers.
    Reshetnyak YK; Segala M; Andreev OA; Engelman DM
    Biophys J; 2007 Oct; 93(7):2363-72. PubMed ID: 17557792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bottom-up engineering of peptide cell translocators based on environmentally modulated quadrupole switches.
    Fernández A; Crespo A; Maddipati S; Scott R
    ACS Nano; 2008 Jan; 2(1):61-8. PubMed ID: 19206548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the insertion properties of pHLIP.
    Musial-Siwek M; Karabadzhak A; Andreev OA; Reshetnyak YK; Engelman DM
    Biochim Biophys Acta; 2010 Jun; 1798(6):1041-6. PubMed ID: 19766589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lipid headgroup charge and pH on the stability and membrane insertion potential of calcium condensed gene complexes.
    Alhakamy NA; Elandaloussi I; Ghazvini S; Berkland CJ; Dhar P
    Langmuir; 2015 Apr; 31(14):4232-45. PubMed ID: 25768428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.