BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26497448)

  • 1. Interface pressure mapping pilot study to select surfaces that effectively redistribute pediatric occipital pressure.
    Higer S; James T
    J Tissue Viability; 2016 Feb; 25(1):41-9. PubMed ID: 26497448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface pressure measurement during surgery: a comparison of four operating table surfaces.
    Keller BP; van Overbeeke J; van der Werken C
    J Wound Care; 2006 Jan; 15(1):5-9. PubMed ID: 16669297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supine interface pressure in children.
    Solis I; Krouskop T; Trainer N; Marburger R
    Arch Phys Med Rehabil; 1988 Jul; 69(7):524-6. PubMed ID: 3389994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface pressure comparison of healthy premature infants with various neonatal bed surfaces.
    Turnage-Carrier C; McLane KM; Gregurich MA
    Adv Neonatal Care; 2008 Jun; 8(3):176-84. PubMed ID: 18535423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of comfort associated with the use of a robotic mattress with an interface pressure mapping system and automatic inner air-cell pressure adjustment function in healthy volunteers.
    Saegusa M; Noguchi H; Nakagami G; Mori T; Sanada H
    J Tissue Viability; 2018 Aug; 27(3):146-152. PubMed ID: 29910093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of interface pressures in the pediatric population among various support surfaces.
    McLane KM; Krouskop TA; McCord S; Fraley JK
    J Wound Ostomy Continence Nurs; 2002 Sep; 29(5):242-51. PubMed ID: 12510470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcirculatory responses of sacral tissue in healthy individuals and inpatients on different pressure-redistribution mattresses.
    Bergstrand S; Källman U; Ek AC; Engström M; Lindgren M
    J Wound Care; 2015 Aug; 24(8):346-58. PubMed ID: 26562377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a novel pressure distribution system for severely ill neonates: a clinical pilot study carried out by the PREPICare consortium.
    Schlüer AB; Müller AY; Fromme NP; Camenzind M; Riener R; Rossi RM; Aufdenblatten BB
    BMC Pediatr; 2023 Nov; 23(1):593. PubMed ID: 37993822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue interface pressure and estimated subcutaneous pressures of 11 different pressure-reducing support surfaces.
    Thompson-Bishop JY; Mottola CM
    Decubitus; 1992 Mar; 5(2):42-6, 48. PubMed ID: 1558691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positron emission tomography study of effects of two pressure-relieving support surfaces on pressure ulcer development.
    Soppi E; Knuuti J; Kalliokoski K
    J Wound Care; 2021 Jan; 30(1):54-62. PubMed ID: 33439081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the cut-off point for interface pressure in pressure injury according to the standard hospital mattress and polyurethane foam mattress as support surfaces.
    Yu M; Park KH; Shin J; Lee JH
    Int Wound J; 2022 Oct; 19(6):1509-1517. PubMed ID: 35107216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface pressure measurements of support surfaces with subjects in the supine and 45-degree Fowler positions.
    Whittemore R; Bautista C; Smith C; Bruttomesso K
    J ET Nurs; 1993; 20(3):111-5. PubMed ID: 8347757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pilot randomised controlled trial comparing reactive air and active alternating pressure mattresses in the prevention and treatment of pressure ulcers among medical ICU patients.
    Malbrain M; Hendriks B; Wijnands P; Denie D; Jans A; Vanpellicom J; De Keulenaer B
    J Tissue Viability; 2010 Feb; 19(1):7-15. PubMed ID: 20079647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface pressure at different degrees of backrest elevation with various types of pressure-redistribution surfaces.
    Lippoldt J; Pernicka E; Staudinger T
    Am J Crit Care; 2014 Mar; 23(2):119-26. PubMed ID: 24585160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evaluation of five specialized support surfaces by use of a pressure-sensitive mat.
    Patel UH; Jones JT; Babbs CF; Bourland JD; Graber GP
    Decubitus; 1993 May; 6(3):28-31, 34, 36-7. PubMed ID: 8347281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pilot study comparing custom contoured and planar support surfaces for pressure ulcer risk over the heels for night time postural management using interface pressure mapping and discomfort scores.
    Hosking J
    J Tissue Viability; 2017 Aug; 26(3):189-195. PubMed ID: 28454679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of multiple layers of linens on surface interface pressure: results of a laboratory study.
    Williamson R; Lachenbruch C; Vangilder C
    Ostomy Wound Manage; 2013 Jun; 59(6):38-48. PubMed ID: 23749661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-body interface pressure testing as a method for performance evaluation of clinical support surfaces.
    Shelton F; Barnett R; Meyer E
    Appl Ergon; 1998 Dec; 29(6):491-7. PubMed ID: 9796795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxy-Mat™ Mattress System Development Utilizing Simultaneous Measurement of Interface Pressure and Deep Tissue Oxygen Saturation.
    Butler GJ; Kenyon DJ; Gorenstein S; Davenport T; Golembe E; Lee B; Vieweg J
    Surg Technol Int; 2015 May; 26():71-82. PubMed ID: 26054994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo (CT scan) comparison of vertical shear in human tissue caused by various support surfaces.
    Conner LM; Clack JW
    Decubitus; 1993 Mar; 6(2):20-3, 26-8. PubMed ID: 8318155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.