These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 26497452)
81. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry. Betancor MB; Li K; Sprague M; Bardal T; Sayanova O; Usher S; Han L; Måsøval K; Torrissen O; Napier JA; Tocher DR; Olsen RE PLoS One; 2017; 12(4):e0175415. PubMed ID: 28403232 [TBL] [Abstract][Full Text] [Related]
82. Shewanella marisflavi sp. nov. and Shewanella aquimarina sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Yoon JH; Yeo SH; Kim IG; Oh TK Int J Syst Evol Microbiol; 2004 Nov; 54(Pt 6):2347-2352. PubMed ID: 15545482 [TBL] [Abstract][Full Text] [Related]
83. Bioconversion From Docosahexaenoic Acid to Eicosapentaenoic Acid in the Marine Bacterium Ogawa T; Hirose K; Yusuf Y; Kawamoto J; Kurihara T Front Microbiol; 2020; 11():1104. PubMed ID: 32528457 [TBL] [Abstract][Full Text] [Related]
84. The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation. Bell JG; Tocher DR; Farndale BM; Cox DI; McKinney RW; Sargent JR Lipids; 1997 May; 32(5):515-25. PubMed ID: 9168458 [TBL] [Abstract][Full Text] [Related]
85. Shewanella arctica sp. nov., an iron-reducing bacterium isolated from Arctic marine sediment. Kim SJ; Park SJ; Oh YS; Lee SA; Shin KS; Roh DH; Rhee SK Int J Syst Evol Microbiol; 2012 May; 62(Pt 5):1128-1133. PubMed ID: 21724958 [TBL] [Abstract][Full Text] [Related]
86. Occurrence and diversity of mesophilic Shewanella strains isolated from the North-West Pacific Ocean. Ivanova EP; Sawabe T; Zhukova NV; Gorshkova NM; Nedashkovskaya OI; Hayashi K; Frolova GM; Sergeev AF; Pavel KG; Mikhailov VV; Nicolau DV Syst Appl Microbiol; 2003 Jun; 26(2):293-301. PubMed ID: 12866857 [TBL] [Abstract][Full Text] [Related]
87. Accretion of Dietary Docosahexaenoic Acid in Mouse Tissues Did Not Differ between Its Purified Phospholipid and Triacylglycerol Forms. Adkins Y; Laugero KD; Mackey B; Kelley DS Lipids; 2019 Jan; 54(1):25-37. PubMed ID: 30697752 [TBL] [Abstract][Full Text] [Related]
88. Enhancement of polyunsaturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid-producing bacteria. Morita N; Nishida T; Tanaka M; Yano Y; Okuyama H Biotechnol Lett; 2005 Mar; 27(6):389-93. PubMed ID: 15834803 [TBL] [Abstract][Full Text] [Related]
89. Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium. Loch TP; Faisal M Int J Syst Evol Microbiol; 2014 May; 64(Pt 5):1573-1579. PubMed ID: 24480907 [TBL] [Abstract][Full Text] [Related]
91. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Allen EE; Bartlett DH Microbiology (Reading); 2002 Jun; 148(Pt 6):1903-1913. PubMed ID: 12055309 [TBL] [Abstract][Full Text] [Related]
92. The gastrointestinal phage communities of the cultivated freshwater fishes. He Y; Yang H FEMS Microbiol Lett; 2015 Mar; 362(5):. PubMed ID: 25743067 [TBL] [Abstract][Full Text] [Related]
93. Genetic effects of fatty acid composition in muscle of Atlantic salmon. Horn SS; Ruyter B; Meuwissen THE; Hillestad B; Sonesson AK Genet Sel Evol; 2018 May; 50(1):23. PubMed ID: 29720078 [TBL] [Abstract][Full Text] [Related]
94. Muscle Fatty Acid Content in Selected Freshwater Fish from Bukit Merah Reservoir, Perak, Malaysia. Jaya-Ram A; Fuad F; Zakeyuddin MS; Sah ASRM Trop Life Sci Res; 2018 Jul; 29(2):103-117. PubMed ID: 30112144 [TBL] [Abstract][Full Text] [Related]