These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26497456)

  • 1. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae.
    Watanabe D; Zhou Y; Hirata A; Sugimoto Y; Takagi K; Akao T; Ohya Y; Takagi H; Shimoi H
    Appl Environ Microbiol; 2016 Jan; 82(1):340-51. PubMed ID: 26497456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient Signaling via the TORC1-Greatwall-PP2A
    Watanabe D; Kajihara T; Sugimoto Y; Takagi K; Mizuno M; Zhou Y; Chen J; Takeda K; Tatebe H; Shiozaki K; Nakazawa N; Izawa S; Akao T; Shimoi H; Maeda T; Takagi H
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30341081
    [No Abstract]   [Full Text] [Related]  

  • 3. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains.
    Watanabe D; Araki Y; Zhou Y; Maeya N; Akao T; Shimoi H
    Appl Environ Microbiol; 2012 Jun; 78(11):4008-16. PubMed ID: 22447585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation.
    Watanabe D; Takagi H
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1061-1068. PubMed ID: 28485209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions.
    Watanabe D; Kaneko A; Sugimoto Y; Ohnuki S; Takagi H; Ohya Y
    J Biosci Bioeng; 2017 Feb; 123(2):183-189. PubMed ID: 27633130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2.
    Inai T; Watanabe D; Zhou Y; Fukada R; Akao T; Shima J; Takagi H; Shimoi H
    J Biosci Bioeng; 2013 Nov; 116(5):591-4. PubMed ID: 23757382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of Rim15p in shochu yeast alters carbon utilization during barley shochu fermentation.
    Watanabe D; Tashiro S; Shintani D; Sugimoto Y; Iwami A; Kajiwara Y; Takashita H; Takagi H
    Biosci Biotechnol Biochem; 2019 Aug; 83(8):1594-1597. PubMed ID: 30898039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and morphological effects of genetic alterations leading to a reduced synthesis of UDP-glucose in Saccharomyces cerevisiae.
    Daran JM; Bell W; François J
    FEMS Microbiol Lett; 1997 Aug; 153(1):89-96. PubMed ID: 9252577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UDP-glucose pyrophosphorylase Ugp1 is involved in oxidative stress response and long-term survival during stationary phase in Saccharomyces cerevisiae.
    Yi DG; Huh WK
    Biochem Biophys Res Commun; 2015 Nov; 467(4):657-63. PubMed ID: 26498530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.
    Oomuro M; Kato T; Zhou Y; Watanabe D; Motoyama Y; Yamagishi H; Akao T; Aizawa M
    J Biosci Bioeng; 2016 Nov; 122(5):577-582. PubMed ID: 27212268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation.
    Smith TL; Rutter J
    Mol Cell; 2007 May; 26(4):491-9. PubMed ID: 17531808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae.
    Daran JM; Dallies N; Thines-Sempoux D; Paquet V; François J
    Eur J Biochem; 1995 Oct; 233(2):520-30. PubMed ID: 7588797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polygenic Analysis in Absence of Major Effector
    Holt S; Trindade de Carvalho B; Foulquié-Moreno MR; Thevelein JM
    mBio; 2018 Aug; 9(4):. PubMed ID: 30154260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.
    Watanabe D; Nogami S; Ohya Y; Kanno Y; Zhou Y; Akao T; Shimoi H
    J Biosci Bioeng; 2011 Dec; 112(6):577-82. PubMed ID: 21906996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAL62 overexpression enhances uridine diphosphoglucose-dependent trehalose synthesis and glycerol metabolism for cryoprotection of baker's yeast in lean dough.
    Sun X; Zhang J; Fan ZH; Xiao P; Li F; Liu HQ; Zhu WB
    Microb Cell Fact; 2020 Oct; 19(1):196. PubMed ID: 33076920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR
    Watanabe D; Kumano M; Sugimoto Y; Ito M; Ohashi M; Sunada K; Takahashi T; Yamada T; Takagi H
    J Biosci Bioeng; 2018 Nov; 126(5):624-629. PubMed ID: 29861316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKA, PHO and stress response pathways regulate the expression of UDP-glucose pyrophosphorylase through Msn2/4 in budding yeast.
    Yi DG; Huh WK
    FEBS Lett; 2015 Aug; 589(18):2409-16. PubMed ID: 26188548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast.
    Kessi-Pérez EI; Araos S; García V; Salinas F; Abarca V; Larrondo LF; Martínez C; Cubillos FA
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26945894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of
    Zhou X; He J; Wang L; Wang Y; Du G; Kang Z
    J Microbiol Biotechnol; 2019 May; 29(5):758-764. PubMed ID: 30955255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.
    Watanabe D; Hashimoto N; Mizuno M; Zhou Y; Akao T; Shimoi H
    Biosci Biotechnol Biochem; 2013; 77(11):2255-62. PubMed ID: 24200791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.