BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 26497522)

  • 1. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design.
    Caaveiro JM; Kiyoshi M; Tsumoto K
    Immunol Rev; 2015 Nov; 268(1):201-21. PubMed ID: 26497522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural mechanism of high affinity FcγRI recognition of immunoglobulin G.
    Lu J; Sun PD
    Immunol Rev; 2015 Nov; 268(1):192-200. PubMed ID: 26497521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.
    Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR
    Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants.
    Dashivets T; Thomann M; Rueger P; Knaupp A; Buchner J; Schlothauer T
    PLoS One; 2015; 10(12):e0143520. PubMed ID: 26657484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a novel asymmetrically engineered Fc variant with improved affinity for FcγRs.
    Mimoto F; Kadono S; Katada H; Igawa T; Kamikawa T; Hattori K
    Mol Immunol; 2014 Mar; 58(1):132-8. PubMed ID: 24334029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions.
    Schlothauer T; Herter S; Koller CF; Grau-Richards S; Steinhart V; Spick C; Kubbies M; Klein C; Umaña P; Mössner E
    Protein Eng Des Sel; 2016 Oct; 29(10):457-466. PubMed ID: 27578889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of GASDALIE Fc bound to the activating Fc receptor FcγRIIIa.
    Ahmed AA; Keremane SR; Vielmetter J; Bjorkman PJ
    J Struct Biol; 2016 Apr; 194(1):78-89. PubMed ID: 26850169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-linked glycan structures of the human Fcγ receptors produced in NS0 cells.
    Cosgrave EF; Struwe WB; Hayes JM; Harvey DJ; Wormald MR; Rudd PM
    J Proteome Res; 2013 Aug; 12(8):3721-37. PubMed ID: 23777450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural consequences of aglycosylated IgG Fc variants evolved for FcγRI binding.
    Ju MS; Na JH; Yu YG; Kim JY; Jeong C; Jung ST
    Mol Immunol; 2015 Oct; 67(2 Pt B):350-6. PubMed ID: 26153451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restricted processing of CD16a/Fc γ receptor IIIa
    Patel KR; Roberts JT; Subedi GP; Barb AW
    J Biol Chem; 2018 Mar; 293(10):3477-3489. PubMed ID: 29330305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method to Detect the Binding of Hyper-Glycosylated Fragment Crystallizable (Fc) Region of Human IgG1 to Glycan Receptors.
    Blundell P; Pleass R
    Methods Mol Biol; 2019; 1904():417-421. PubMed ID: 30539483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface.
    Teplyakov A; Zhao Y; Malia TJ; Obmolova G; Gilliland GL
    Mol Immunol; 2013 Nov; 56(1-2):131-9. PubMed ID: 23628091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD16a with oligomannose-type
    Subedi GP; Barb AW
    J Biol Chem; 2018 Oct; 293(43):16842-16850. PubMed ID: 30213862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoglobulin G1 Fc domain motions: implications for Fc engineering.
    Frank M; Walker RC; Lanzilotta WN; Prestegard JH; Barb AW
    J Mol Biol; 2014 Apr; 426(8):1799-811. PubMed ID: 24522230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy.
    Yamaguchi Y; Nishimura M; Nagano M; Yagi H; Sasakawa H; Uchida K; Shitara K; Kato K
    Biochim Biophys Acta; 2006 Apr; 1760(4):693-700. PubMed ID: 16343775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fc gamma receptor glycosylation modulates the binding of IgG glycoforms: a requirement for stable antibody interactions.
    Hayes JM; Frostell A; Cosgrave EF; Struwe WB; Potter O; Davey GP; Karlsson R; Anneren C; Rudd PM
    J Proteome Res; 2014 Dec; 13(12):5471-85. PubMed ID: 25345863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosylation of Fcγ receptors influences their interaction with various IgG1 glycoforms.
    Cambay F; Forest-Nault C; Dumoulin L; Seguin A; Henry O; Durocher Y; De Crescenzo G
    Mol Immunol; 2020 May; 121():144-158. PubMed ID: 32222585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low pH Exposure During Immunoglobulin G Purification Methods Results in Aggregates That Avidly Bind Fcγ Receptors: Implications for Measuring Fc Dependent Antibody Functions.
    Lopez E; Scott NE; Wines BD; Hogarth PM; Wheatley AK; Kent SJ; Chung AW
    Front Immunol; 2019; 10():2415. PubMed ID: 31681303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of N-Glycan Composition on Structure and Dynamics of IgG1 Fc and Their Implications for Antibody Engineering.
    Lee HS; Im W
    Sci Rep; 2017 Oct; 7(1):12659. PubMed ID: 28978918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity.
    Krapp S; Mimura Y; Jefferis R; Huber R; Sondermann P
    J Mol Biol; 2003 Jan; 325(5):979-89. PubMed ID: 12527303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.