These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 26497561)
1. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Galal TM; Farahat EA Environ Monit Assess; 2015 Nov; 187(11):701. PubMed ID: 26497561 [TBL] [Abstract][Full Text] [Related]
2. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Galal TM; Eid EM; Dakhil MA; Hassan LM Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352 [TBL] [Abstract][Full Text] [Related]
3. Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization. Farahat EA; Galal TM Environ Sci Pollut Res Int; 2018 Feb; 25(5):4214-4222. PubMed ID: 29177787 [TBL] [Abstract][Full Text] [Related]
4. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Kumar V; Singh J; Chopra AK Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Kumar V; Singh J; Kumar P Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462 [TBL] [Abstract][Full Text] [Related]
6. Aquatic beetles Cercyon unipunctatus as bioindicators of pollution in Lake Edku and Mariut, Egypt. El-Samad LM; Radwan EH; Mokhamer EHM; Bakr NR Environ Sci Pollut Res Int; 2019 Mar; 26(7):6557-6564. PubMed ID: 30628000 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Odjegba VJ; Fasidi IO Ecotoxicology; 2004 Oct; 13(7):637-46. PubMed ID: 15673213 [TBL] [Abstract][Full Text] [Related]
8. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Veseý T; Tlustos P; Száková J Int J Phytoremediation; 2012 Apr; 14(4):335-49. PubMed ID: 22567715 [TBL] [Abstract][Full Text] [Related]
9. Possible human health risk of some heavy metals from consumption of tilapia fish from Lake Mariut, Egypt. Shaaban NA; El-Rayis OA; Aboeleneen MS Environ Sci Pollut Res Int; 2021 Apr; 28(16):19742-19754. PubMed ID: 33405138 [TBL] [Abstract][Full Text] [Related]
10. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X Environ Sci Pollut Res Int; 2011 Jul; 18(6):978-86. PubMed ID: 21287283 [TBL] [Abstract][Full Text] [Related]
11. The Removal of Cyanobacterial Hepatotoxin [Dha(7)] Microcystin-LR via Bioaccumulation in Water Lettuce (Pistia stratiotes L.). Somdee T; Thathong B; Somdee A Bull Environ Contam Toxicol; 2016 Mar; 96(3):388-94. PubMed ID: 26687499 [TBL] [Abstract][Full Text] [Related]
12. Tolerance mechanism and phytoremediation potential of Li Y; Xin J; Ge W; Tian R Int J Phytoremediation; 2022; 24(12):1259-1266. PubMed ID: 35037542 [No Abstract] [Full Text] [Related]
13. Bioaccumulation and translocation of nine heavy metals by Eid EM; Shaltout KH; Moghanm FS; Youssef MSG; El-Mohsnawy E; Haroun SA Int J Phytoremediation; 2019; 21(8):821-830. PubMed ID: 30784295 [TBL] [Abstract][Full Text] [Related]
14. The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: public health and phytoremediation implications. Gbogbo F; Otoo SD Environ Monit Assess; 2015 Oct; 187(10):655. PubMed ID: 26423633 [TBL] [Abstract][Full Text] [Related]
15. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Mishra VK; Upadhyay AR; Pandey SK; Tripathi BD Environ Monit Assess; 2008 Jun; 141(1-3):49-58. PubMed ID: 17674134 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution. Polechońska L; Samecka-Cymerman A Environ Sci Pollut Res Int; 2016 Feb; 23(4):3469-80. PubMed ID: 26490926 [TBL] [Abstract][Full Text] [Related]
17. Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage. Schwantes D; Gonçalves AC; Schiller ADP; Manfrin J; Campagnolo MA; Somavilla E Int J Phytoremediation; 2019; 21(7):714-723. PubMed ID: 30656947 [TBL] [Abstract][Full Text] [Related]
18. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Galal TM; Gharib FA; Ghazi SM; Mansour KH Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307 [TBL] [Abstract][Full Text] [Related]
19. Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina). Alonso X; Hadad HR; Córdoba C; Polla W; Reyes MS; Fernández V; Granados I; Marino L; Villalba A Environ Sci Pollut Res Int; 2018 Jan; 25(1):312-323. PubMed ID: 29034426 [TBL] [Abstract][Full Text] [Related]
20. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Klink A Environ Sci Pollut Res Int; 2017 Feb; 24(4):3843-3852. PubMed ID: 27900625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]