These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26497561)

  • 21. Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus.
    Eid EM; Galal TM; Shaltout KH; El-Sheikh MA; Asaeda T; Alatar AA; Alfarhan AH; Alharthi A; Alshehri AMA; Picó Y; Barcelo D
    Sci Total Environ; 2020 Apr; 714():136603. PubMed ID: 31982738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron plaque formation in the roots of Pistia stratiotes L.: importance in phytoremediation of cadmium.
    Singha KT; Sebastian A; Prasad MNV
    Int J Phytoremediation; 2019; 21(2):120-128. PubMed ID: 30729796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of the bioaccumulative efficiency of
    Ergönül MB; Nassouhi D; Atasağun S
    Int J Phytoremediation; 2020; 22(2):201-209. PubMed ID: 31475565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trace element accumulation in Salvinia natans from areas of various land use types.
    Polechońska L; Klink A; Dambiec M
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30242-30251. PubMed ID: 31422538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: A phytoremediation approach.
    Galal TM; Gharib FA; Ghazi SM; Mansour KH
    Int J Phytoremediation; 2017 Nov; 19(11):992-999. PubMed ID: 28323451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils.
    Galal TM
    Environ Monit Assess; 2016 Jul; 188(7):434. PubMed ID: 27344559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L.
    Das S; Goswami S; Talukdar AD
    Bull Environ Contam Toxicol; 2014 Feb; 92(2):169-74. PubMed ID: 24220931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: a comparative assessment.
    Eid EM; Galal TM; Sewelam NA; Talha NI; Abdallah SM
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12138-12151. PubMed ID: 31984462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile.
    Fawzy MA; Badr Nel-S; El-Khatib A; Abo-El-Kassem A
    Environ Monit Assess; 2012 Mar; 184(3):1753-71. PubMed ID: 21562793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal Potential of Phragmites australis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt.
    Eid EM; Shaltout KH; Al-Sodany YM; Haroun SA; Galal TM; Ayed H; Khedher KM; Jensen K
    Bull Environ Contam Toxicol; 2021 Mar; 106(3):516-527. PubMed ID: 33547904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal phytoremediation potential for heavy metals and bacterial abundance in drainage water.
    El-Liethy MA; Dakhil MA; El-Keblawy A; Abdelaal M; Halmy MWA; Elgarhy AH; Kamika I; El-Sherbeny GA; Mwaheb MA
    Sci Rep; 2022 May; 12(1):8223. PubMed ID: 35581245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China.
    Tao Y; Yuan Z; Xiaona H; Wei M
    Ecotoxicol Environ Saf; 2012 Jul; 81():55-64. PubMed ID: 22633085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation potential of
    Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A
    Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous.
    Mufarrege MM; Hadad HR; Maine MA
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):53-61. PubMed ID: 19506937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte
    Galal TM; Al-Sodany YM; Al-Yasi HM
    Int J Phytoremediation; 2020; 22(4):373-382. PubMed ID: 31553230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic.
    Farnese FS; Oliveira JA; Lima FS; Leão GA; Gusman GS; Silva LC
    Braz J Biol; 2014 Aug; 74(3 Suppl 1):S108-12. PubMed ID: 25627371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.