These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26497627)

  • 1. Rational design of efficient modular cells.
    Trinh CT; Liu Y; Conner DJ
    Metab Eng; 2015 Nov; 32():220-231. PubMed ID: 26497627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering modular ester fermentative pathways in Escherichia coli.
    Layton DS; Trinh CT
    Metab Eng; 2014 Nov; 26():77-88. PubMed ID: 25281839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design and analysis of modular cells for large libraries of exchangeable product synthesis modules.
    Garcia S; Trinh CT
    Metab Eng; 2021 Sep; 67():453-463. PubMed ID: 34339856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters.
    Lee JW; Trinh CT
    Metab Eng; 2022 Jan; 69():262-274. PubMed ID: 34883244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiobjective strain design: A framework for modular cell engineering.
    Garcia S; Trinh CT
    Metab Eng; 2019 Jan; 51():110-120. PubMed ID: 30201314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Prototype for Modular Cell Engineering.
    Wilbanks B; Layton DS; Garcia S; Trinh CT
    ACS Synth Biol; 2018 Jan; 7(1):187-199. PubMed ID: 29017319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering an Escherichia coli platform to synthesize designer biodiesels.
    Wierzbicki M; Niraula N; Yarrabothula A; Layton DS; Trinh CT
    J Biotechnol; 2016 Apr; 224():27-34. PubMed ID: 26953744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals.
    Garcia S; Trinh CT
    ACS Synth Biol; 2020 Jul; 9(7):1665-1681. PubMed ID: 32470305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial biosynthesis of lactate esters.
    Lee JW; Trinh CT
    Biotechnol Biofuels; 2019; 12():226. PubMed ID: 31548868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a Synthetic
    Seo H; Castro G; Trinh CT
    ACS Synth Biol; 2024 Jan; 13(1):259-268. PubMed ID: 38091519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.
    Layton DS; Trinh CT
    Biotechnol Bioeng; 2016 Aug; 113(8):1764-76. PubMed ID: 26853081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
    Trinh CT
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.
    Wu J; Zhang X; Zhu Y; Tan Q; He J; Dong M
    Sci Rep; 2017 May; 7(1):1459. PubMed ID: 28469159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures.
    Lim HG; Lim JH; Jung GY
    Biotechnol Biofuels; 2015; 8():137. PubMed ID: 26347006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate modular metabolic engineering for pathway and strain optimization.
    Biggs BW; De Paepe B; Santos CN; De Mey M; Kumaran Ajikumar P
    Curr Opin Biotechnol; 2014 Oct; 29():156-62. PubMed ID: 24927371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions.
    Zhu F; Wang Y; San KY; Bennett GN
    Biotechnol Bioeng; 2018 Jul; 115(7):1743-1754. PubMed ID: 29508908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.
    Miscevic D; Srirangan K; Kefale T; Abedi D; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5215-5230. PubMed ID: 31049621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate.
    Noh HJ; Woo JE; Lee SY; Jang YS
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8319-8327. PubMed ID: 30076425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium.
    Wen Z; Minton NP; Zhang Y; Li Q; Liu J; Jiang Y; Yang S
    Metab Eng; 2017 Jan; 39():38-48. PubMed ID: 27794465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.