These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 26497705)
1. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition. Thulasi-Varma CV; Rao SS; Kumar CS; Gopi CV; Durga IK; Kim SK; Punnoose D; Kim HJ Dalton Trans; 2015 Nov; 44(44):19330-43. PubMed ID: 26497705 [TBL] [Abstract][Full Text] [Related]
2. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells. Kim HJ; Myung-Sik L; Gopi CV; Venkata-Haritha M; Rao SS; Kim SK Dalton Trans; 2015 Jul; 44(25):11340-51. PubMed ID: 26011676 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition. Rao SS; Durga IK; Kang TS; Kim SK; Punnoose D; Gopi CV; Eswar Reddy A; Krishna TN; Kim HJ Dalton Trans; 2016 Feb; 45(8):3450-63. PubMed ID: 26796086 [TBL] [Abstract][Full Text] [Related]
4. Influence of Cu vacancy on knit coir mat structured CuS as counter electrode for quantum dot sensitized solar cells. Savariraj AD; Viswanathan KK; Prabakar K ACS Appl Mater Interfaces; 2014 Nov; 6(22):19702-9. PubMed ID: 25341851 [TBL] [Abstract][Full Text] [Related]
5. Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells. Muthalif MPA; Choe Y J Colloid Interface Sci; 2021 Aug; 595():15-24. PubMed ID: 33813220 [TBL] [Abstract][Full Text] [Related]
6. Antimony tin oxide/lead selenide composite as efficient counter electrode material for quantum dot-sensitized solar cells. Jin BB; Huang HS; Kong SY; Zhang GQ; Yang B; Jiang CX; Zhou Y; Wang DJ; Zeng JH J Colloid Interface Sci; 2021 Sep; 598():492-499. PubMed ID: 33951547 [TBL] [Abstract][Full Text] [Related]
7. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Muthalif MPA; Sunesh CD; Choe Y J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116 [TBL] [Abstract][Full Text] [Related]
8. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices. Kim M; Ochirbat A; Lee HJ Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801 [TBL] [Abstract][Full Text] [Related]
9. High-Performance Platinum-Free Dye-Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes. Hussain S; Shaikh SF; Vikraman D; Mane RS; Joo OS; Naushad M; Jung J Chemphyschem; 2015 Dec; 16(18):3959-65. PubMed ID: 26472540 [TBL] [Abstract][Full Text] [Related]
10. A facile in situ synthesis route for CuInS(2) quantum-dots/In(2)S(3) co-sensitized photoanodes with high photoelectric performance. Wang YQ; Rui YC; Zhang QH; Li YG; Wang HZ ACS Appl Mater Interfaces; 2013 Nov; 5(22):11858-64. PubMed ID: 24160726 [TBL] [Abstract][Full Text] [Related]
11. Large-scale synthesis of Cu2SnS3 and Cu(1.8)S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells. Xu J; Yang X; Wong TL; Lee CS Nanoscale; 2012 Oct; 4(20):6537-42. PubMed ID: 22968176 [TBL] [Abstract][Full Text] [Related]
12. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. Bajpai R; Roy S; Kumar P; Bajpai P; Kulshrestha N; Rafiee J; Koratkar N; Misra DS ACS Appl Mater Interfaces; 2011 Oct; 3(10):3884-9. PubMed ID: 21877742 [TBL] [Abstract][Full Text] [Related]
13. Heat-treatment-induced development of the crystalline structure and chemical stoichiometry of a Cu Deng J; Zhang P; Li L; Gou Y; Fang J; Lei Y; Song X; Yang Z J Colloid Interface Sci; 2020 Nov; 579():805-814. PubMed ID: 32673857 [TBL] [Abstract][Full Text] [Related]
14. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells. Faber MS; Park K; Cabán-Acevedo M; Santra PK; Jin S J Phys Chem Lett; 2013 Jun; 4(11):1843-9. PubMed ID: 26283119 [TBL] [Abstract][Full Text] [Related]
15. Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells. Suriyawong N; Aragaw B; Shi JB; Lee MW J Colloid Interface Sci; 2016 Jul; 473():60-5. PubMed ID: 27054767 [TBL] [Abstract][Full Text] [Related]
16. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells. Deng J; Wang M; Song X; Yang Z; Yuan Z Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29673225 [TBL] [Abstract][Full Text] [Related]
17. N-Doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. Ju MJ; Kim JC; Choi HJ; Choi IT; Kim SG; Lim K; Ko J; Lee JJ; Jeon IY; Baek JB; Kim HK ACS Nano; 2013 Jun; 7(6):5243-50. PubMed ID: 23656316 [TBL] [Abstract][Full Text] [Related]
18. A novel strategy to design a multilayer functionalized Cu Wu L; Lin Z; Feng P; Luo L; Zhai L; Kong F; Yang Y; Zhang L; Huang S; Zou C Nanoscale Adv; 2020 Feb; 2(2):833-843. PubMed ID: 36133221 [TBL] [Abstract][Full Text] [Related]
19. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications. Xu J; Yang X; Yang Q; Zhang W; Lee CS ACS Appl Mater Interfaces; 2014 Sep; 6(18):16352-9. PubMed ID: 25162581 [TBL] [Abstract][Full Text] [Related]