These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26497846)

  • 1. The application of low frequency dielectric spectroscopy to analyze the electrorheological behavior of monodisperse yolk-shell SiO2/TiO2 nanospheres.
    Guo X; Chen Y; Li D; Li G; Xin M; Zhao M; Yang C; Hao C; Lei Q
    Soft Matter; 2016 Jan; 12(2):546-54. PubMed ID: 26497846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Electrorheological Performance of Nb-Doped TiO2 Microspheres Based Suspensions and Their Behavior Characteristics in Low-Frequency Dielectric Spectroscopy.
    Guo X; Chen Y; Su M; Li D; Li G; Li C; Tian Y; Hao C; Lei Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26624-32. PubMed ID: 26570989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Electroresponsive Performance of Double-Shell SiO2/TiO2 Hollow Nanoparticles.
    Lee S; Lee J; Hwang SH; Yun J; Jang J
    ACS Nano; 2015 May; 9(5):4939-49. PubMed ID: 25844731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Electrorheological Properties of Elastomers Containing TiO₂/Urea Core-Shell Particles.
    Niu C; Dong X; Qi M
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24855-63. PubMed ID: 26492099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Electroresponsive Electrorheological Effect and Temperature Dependence of Poly(ionic liquid) Particles by Hard Core Confinement.
    Lei Q; Zheng C; He F; Zhao J; Liu Y; Zhao X; Yin J
    Langmuir; 2018 Dec; 34(51):15827-15838. PubMed ID: 30500198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions.
    Di K; Zhu Y; Yang X; Li C
    J Colloid Interface Sci; 2006 Feb; 294(2):499-503. PubMed ID: 16125189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core/shell nanocomposite based on the local polarization and its electrorheological behavior.
    Wang B; Zhao X
    Langmuir; 2005 Jul; 21(14):6553-9. PubMed ID: 15982066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning.
    Zhang R; Shang T; Yang G; Jia X; Cai Q; Yang X
    Colloids Surf B Biointerfaces; 2016 Aug; 144():238-249. PubMed ID: 27092439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected Effects of Activator Molecules' Polarity on the Electroreological Activity of Titanium Dioxide Nanopowders.
    Agafonov AV; Davydova OI; Krayev AS; Ivanova OS; Evdokimova OL; Gerasimova TV; Baranchikov AE; Kozik VV; Ivanov VK
    J Phys Chem B; 2017 Jul; 121(27):6732-6738. PubMed ID: 28613905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double enzymatic cascade reactions within FeSe-Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose.
    Qiao F; Wang Z; Xu K; Ai S
    Analyst; 2015 Oct; 140(19):6684-91. PubMed ID: 26328477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities.
    Cheng Y; Liu X; Guo J; Liu F; Li Z; Xu G; Cui P
    Nanotechnology; 2009 Feb; 20(5):055604. PubMed ID: 19417351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.
    Sun JY; Wang ZK; Lim HS; Ng SC; Kuok MH; Tran TT; Lu X
    ACS Nano; 2010 Dec; 4(12):7692-8. PubMed ID: 21087022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of montmorillonite/titania nanocomposite and enhanced electrorheological activity.
    Xiang L; Zhao X
    J Colloid Interface Sci; 2006 Apr; 296(1):131-40. PubMed ID: 16203011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-Shell-Structured Electrorheological Fluid with a Polarizability-Tunable Nanocarbon Shell for Enhanced Stimuli-Responsive Activity.
    Chen S; Cheng Y; Zhao Z; Zhang K; Hao T; Sui Y; Wang W; Zhao J; Li Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35741-35749. PubMed ID: 37449438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption.
    Liu Q; Cao Q; Bi H; Liang C; Yuan K; She W; Yang Y; Che R
    Adv Mater; 2016 Jan; 28(3):486-90. PubMed ID: 26588359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced temperature effect of electrorheological fluid based on cross-linked poly(ionic liquid) particles: rheological and dielectric relaxation studies.
    Liu Y; Yuan J; Dong Y; Zhao X; Yin J
    Soft Matter; 2017 Feb; 13(5):1027-1039. PubMed ID: 28091670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles.
    Zheng C; Lei Q; Zhao J; Zhao X; Yin J
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32235757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.