These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26497846)

  • 41. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.
    Wang C; Yan J; Cui X; Wang H
    J Colloid Interface Sci; 2011 Feb; 354(1):94-9. PubMed ID: 21044785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induced permittivity increment of electrorheological fluids in an applied electric field in association with chain formation: A Brownian dynamics simulation study.
    Fertig D; Boda D; Szalai I
    Phys Rev E; 2021 Jun; 103(6-1):062608. PubMed ID: 34271759
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Smart and Functional Conducting Polymers: Application to Electrorheological Fluids.
    Lu Q; Han WJ; Choi HJ
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30400169
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dielectric and electrical properties of electrorheological carbon suspensions.
    Negita K; Misono Y; Yamaguchi T; Shinagawa J
    J Colloid Interface Sci; 2008 May; 321(2):452-8. PubMed ID: 18342876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication of rattle-type TiO2/SiO2 core/shell particles with both high photoactivity and UV-shielding property.
    Ren Y; Chen M; Zhang Y; Wu L
    Langmuir; 2010 Jul; 26(13):11391-6. PubMed ID: 20536170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica.
    Pakdel E; Daoud WA
    J Colloid Interface Sci; 2013 Jul; 401():1-7. PubMed ID: 23602671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of Hierarchical Silica/Titania Hollow Nanoparticles and Their Enhanced Electroresponsive Activity.
    Yoon CM; Ryu J; Yun J; Kim YK; Jang J
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6570-6579. PubMed ID: 29388432
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials.
    Hong JY; Choi M; Kim C; Jang J
    J Colloid Interface Sci; 2010 Jul; 347(2):177-82. PubMed ID: 20416879
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields.
    Kwon SH; Liu YD; Choi HJ
    J Colloid Interface Sci; 2015 Feb; 440():9-15. PubMed ID: 25460683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New electrorheological fluid obtained from mercaptosilsesquioxane-modified silicate suspensions.
    Marins JA; Dahmouche K; Soares BG
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):133-9. PubMed ID: 25428054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process.
    Vishwas M; Rao KN; Gowda KV; Chakradhar RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):614-7. PubMed ID: 21924670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-step synthesis of magnetic hollow mesoporous silica (MHMS) nanospheres for drug delivery nanosystems via electrostatic self-assembly templated approach.
    Liu F; Wang J; Cao Q; Deng H; Shao G; Deng DY; Zhou W
    Chem Commun (Camb); 2015 Feb; 51(12):2357-60. PubMed ID: 25563752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The electrorheological behavior of suspensions based on molten-salt synthesized lithium titanate nanoparticles and their core-shell titanate/urea analogues.
    Plachy T; Mrlik M; Kozakova Z; Suly P; Sedlacik M; Pavlinek V; Kuritka I
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3725-31. PubMed ID: 25633327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of electrorheological fluids: a dielectric study of chain formation.
    Horváth B; Szalai I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061403. PubMed ID: 23367946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electric field control and analyte transport in Si/SiO2 fluidic nanochannels.
    Zhang Y; Gamble TC; Neumann A; Lopez GP; Brueck SR; Petsev DN
    Lab Chip; 2008 Oct; 8(10):1671-5. PubMed ID: 18813389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced Electrorheological Performance of Mixed Silica Nanomaterial Geometry.
    Yoon CM; Jang Y; Noh J; Kim J; Lee K; Jang J
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36358-36367. PubMed ID: 28959883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polymeric Nanoparticle-Coated Pickering Emulsion-Synthesized Conducting Polyaniline Hybrid Particles and Their Electrorheological Study.
    Jun CS; Kwon SH; Choi HJ; Seo Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44811-44819. PubMed ID: 29193955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic polarizability of rotating particles in electrorheological fluids.
    Xiao JJ; Huang JP; Yu KW
    J Phys Chem B; 2008 Jun; 112(22):6767-71. PubMed ID: 18465895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electroresponsive Performances of Ecoresorbable Smart Fluids Consisting of Various Plant-Derived Carrier Liquids.
    Park S; Gwon H; Lee S
    Chemistry; 2021 Oct; 27(55):13739-13747. PubMed ID: 34342922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.