These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26497871)
21. [Global proteomic and phosphoproteomic analysis of the premature maize anther]. Zhang Z; Ye J; Long H; Hong Y; Lu P Sheng Wu Gong Cheng Xue Bao; 2016 Jul; 32(7):937-955. PubMed ID: 29019215 [TBL] [Abstract][Full Text] [Related]
22. Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile. Deng Z; Wang ZY; Kutschera U Protoplasma; 2017 May; 254(3):1317-1322. PubMed ID: 27631339 [TBL] [Abstract][Full Text] [Related]
23. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Wu L; Hu X; Wang S; Tian L; Pang Y; Han Z; Wu L; Chen Y Sci Rep; 2015 Dec; 5():18155. PubMed ID: 26659305 [TBL] [Abstract][Full Text] [Related]
24. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings. Aryal UK; Ross AR; Krochko JE PLoS One; 2015; 10(7):e0130763. PubMed ID: 26158488 [TBL] [Abstract][Full Text] [Related]
25. Light and metabolic signals control the selective degradation of sucrose synthase in maize leaves during deetiolation. Qiu QS; Hardin SC; Mace J; Brutnell TP; Huber SC Plant Physiol; 2007 May; 144(1):468-78. PubMed ID: 17400707 [TBL] [Abstract][Full Text] [Related]
26. Comparative phosphoproteomic analysis of developing maize seeds suggests a pivotal role for enolase in promoting starch synthesis. Cao H; Zhou Y; Chang Y; Zhang X; Li C; Ren D Plant Sci; 2019 Dec; 289():110243. PubMed ID: 31623796 [TBL] [Abstract][Full Text] [Related]
27. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Li K; Xu C; Fan W; Zhang H; Hou J; Yang A; Zhang K Plant Physiol Biochem; 2014 Oct; 83():232-42. PubMed ID: 25190054 [TBL] [Abstract][Full Text] [Related]
28. Phosphoproteomic analysis of the resistant and susceptible genotypes of maize infected with sugarcane mosaic virus. Wu L; Wang S; Wu J; Han Z; Wang R; Wu L; Zhang H; Chen Y; Hu X Amino Acids; 2015 Mar; 47(3):483-96. PubMed ID: 25488425 [TBL] [Abstract][Full Text] [Related]
29. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. Vu LD; Stes E; Van Bel M; Nelissen H; Maddelein D; Inzé D; Coppens F; Martens L; Gevaert K; De Smet I J Proteome Res; 2016 Dec; 15(12):4304-4317. PubMed ID: 27643528 [TBL] [Abstract][Full Text] [Related]
30. Phosphorylation of plant proteins and the identification of protein-tyrosine kinase activity in maize seedlings. Trojanek J; Ek P; Scoble J; Muszýnska G; Engström L Eur J Biochem; 1996 Jan; 235(1-2):338-44. PubMed ID: 8631351 [TBL] [Abstract][Full Text] [Related]
31. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Kumar A; Singh HP; Batish DR; Kaur S; Kohli RK Protoplasma; 2016 Jul; 253(4):1043-9. PubMed ID: 26277350 [TBL] [Abstract][Full Text] [Related]
32. Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. Hloušková P; Černý M; Kořínková N; Luklová M; Minguet EG; Brzobohatý B; Galuszka P; Bergougnoux V J Proteomics; 2019 Feb; 193():44-61. PubMed ID: 30583044 [TBL] [Abstract][Full Text] [Related]
33. A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes. Marcon C; Malik WA; Walley JW; Shen Z; Paschold A; Smith LG; Piepho HP; Briggs SP; Hochholdinger F Plant Physiol; 2015 May; 168(1):233-46. PubMed ID: 25780097 [TBL] [Abstract][Full Text] [Related]
34. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. Yan Z; Shen Z; Li Z; Chao Q; Kong L; Gao ZF; Li QW; Zheng HY; Zhao CF; Lu CM; Wang YW; Wang BC Planta; 2020 Sep; 252(4):60. PubMed ID: 32964359 [TBL] [Abstract][Full Text] [Related]
35. Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings. Ma J; Li XQ Curr Genet; 2015 Nov; 61(4):591-600. PubMed ID: 25782449 [TBL] [Abstract][Full Text] [Related]
36. Regulatory modules controlling early shade avoidance response in maize seedlings. Wang H; Wu G; Zhao B; Wang B; Lang Z; Zhang C; Wang H BMC Genomics; 2016 Mar; 17():269. PubMed ID: 27030359 [TBL] [Abstract][Full Text] [Related]
37. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Chao Q; Gao ZF; Wang YF; Li Z; Huang XH; Wang YC; Mei YC; Zhao BG; Li L; Jiang YB; Wang BC Plant Mol Biol; 2016 Jun; 91(3):287-304. PubMed ID: 26969016 [TBL] [Abstract][Full Text] [Related]
38. Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Li H; Wong WS; Zhu L; Guo HW; Ecker J; Li N Proteomics; 2009 Mar; 9(6):1646-61. PubMed ID: 19253305 [TBL] [Abstract][Full Text] [Related]
39. Cu-Chitosan Nanoparticle Mediated Sustainable Approach To Enhance Seedling Growth in Maize by Mobilizing Reserved Food. Saharan V; Kumaraswamy RV; Choudhary RC; Kumari S; Pal A; Raliya R; Biswas P J Agric Food Chem; 2016 Aug; 64(31):6148-55. PubMed ID: 27460439 [TBL] [Abstract][Full Text] [Related]
40. Large-scale analysis of phosphorylated proteins in maize leaf. Bi YD; Wang HX; Lu TC; Li XH; Shen Z; Chen YB; Wang BC Planta; 2011 Feb; 233(2):383-92. PubMed ID: 21053013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]