These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26497888)
1. Theoretical study of polyiodide formation and stability on monolayer and bilayer graphene. Tristant D; Puech P; Gerber IC Phys Chem Chem Phys; 2015 Nov; 17(44):30045-51. PubMed ID: 26497888 [TBL] [Abstract][Full Text] [Related]
2. Doping characteristics of iodine on as-grown chemical vapor deposited graphene on Pt. Kim H; Renault O; Tyurnina A; Guillet JF; Simonato JP; Rouchon D; Mariolle D; Chevalier N; Dijon J Ultramicroscopy; 2015 Dec; 159 Pt 3():470-5. PubMed ID: 26190008 [TBL] [Abstract][Full Text] [Related]
3. Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles. Wang B; Bocquet ML Nanoscale; 2012 Aug; 4(15):4687-93. PubMed ID: 22735164 [TBL] [Abstract][Full Text] [Related]
4. A DFT study of halogen atoms adsorbed on graphene layers. Medeiros PV; Mascarenhas AJ; de Brito Mota F; de Castilho CM Nanotechnology; 2010 Dec; 21(48):485701. PubMed ID: 21063056 [TBL] [Abstract][Full Text] [Related]
5. Tuning the van der Waals Interaction of Graphene with Molecules via Doping. Huttmann F; Martínez-Galera AJ; Caciuc V; Atodiresei N; Schumacher S; Standop S; Hamada I; Wehling TO; Blügel S; Michely T Phys Rev Lett; 2015 Dec; 115(23):236101. PubMed ID: 26684126 [TBL] [Abstract][Full Text] [Related]
6. Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene. Mao Y; Zhong J Nanotechnology; 2008 May; 19(20):205708. PubMed ID: 21825751 [TBL] [Abstract][Full Text] [Related]
7. Electronic and infrared spectral and thermal studies on the molecular complex of dibenzo-18-crown-6 and iodine. Shahada LA Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1795-8. PubMed ID: 15863050 [TBL] [Abstract][Full Text] [Related]
8. Diamond as an inert substrate of graphene. Hu W; Li Z; Yang J J Chem Phys; 2013 Feb; 138(5):054701. PubMed ID: 23406135 [TBL] [Abstract][Full Text] [Related]
9. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations. Xu P; Tang Q; Zhou Z Nanotechnology; 2013 Aug; 24(30):305401. PubMed ID: 23818035 [TBL] [Abstract][Full Text] [Related]
10. Theoretical Modeling of Electronic Structures of Polyiodide Species Included in α-Cyclodextrin. Okuda M; Hiramatsu T; Yasuda M; Ishigaki M; Ozaki Y; Hayashi M; Tominaga K; Chatani E J Phys Chem B; 2020 May; 124(20):4089-4096. PubMed ID: 32343576 [TBL] [Abstract][Full Text] [Related]
11. Electronic structures of an epitaxial graphene monolayer on SiC(0001) after gold intercalation: a first-principles study. Chuang FC; Lin WH; Huang ZQ; Hsu CH; Kuo CC; Ozolins V; Yeh V Nanotechnology; 2011 Jul; 22(27):275704. PubMed ID: 21597151 [TBL] [Abstract][Full Text] [Related]
12. First-principles investigation of bilayer graphene with intercalated C, N or O atoms. Gong SJ; Sheng W; Yang ZQ; Chu JH J Phys Condens Matter; 2010 Jun; 22(24):245502. PubMed ID: 21393783 [TBL] [Abstract][Full Text] [Related]
13. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
14. Band gap opening in methane intercalated graphene. Hargrove J; Shashikala HB; Guerrido L; Ravi N; Wang XQ Nanoscale; 2012 Aug; 4(15):4443-6. PubMed ID: 22695708 [TBL] [Abstract][Full Text] [Related]
15. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Qin W; Li X; Bian WW; Fan XJ; Qi JY Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174 [TBL] [Abstract][Full Text] [Related]
16. Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene. Manna AK; Pati SK Chemphyschem; 2013 Jun; 14(9):1844-52. PubMed ID: 23616400 [TBL] [Abstract][Full Text] [Related]
17. The role of chemistry in graphene doping for carbon-based electronics. Nistor RA; Newns DM; Martyna GJ ACS Nano; 2011 Apr; 5(4):3096-103. PubMed ID: 21391615 [TBL] [Abstract][Full Text] [Related]
18. Strongly Hole-Doped and Highly Decoupled Graphene on Platinum by Water Intercalation. Li Z; Li S; Chen HT; Gao N; Schouteden K; Qiang X; Zhao J; Brems S; Huyghebaert C; Van Haesendonck C J Phys Chem Lett; 2019 Jul; 10(14):3998-4002. PubMed ID: 31260314 [TBL] [Abstract][Full Text] [Related]
19. Tunable electronic properties induced by a defect-substrate in graphene/BC3 heterobilayers. Li SS; Zhang CW; Ji WX; Li F; Wang PJ Phys Chem Chem Phys; 2014 Nov; 16(41):22861-6. PubMed ID: 25241677 [TBL] [Abstract][Full Text] [Related]