These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1112 related articles for article (PubMed ID: 26498397)
1. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
2. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Malanovic N; Lohner K Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273 [TBL] [Abstract][Full Text] [Related]
3. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II. Oppedijk SF; Martin NI; Breukink E Biochim Biophys Acta; 2016 May; 1858(5):947-57. PubMed ID: 26523408 [TBL] [Abstract][Full Text] [Related]
4. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides. Münch D; Sahl HG Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3062-71. PubMed ID: 25934055 [TBL] [Abstract][Full Text] [Related]
6. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
7. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779 [TBL] [Abstract][Full Text] [Related]
8. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. Brandenburg K; Heinbockel L; Correa W; Lohner K Biochim Biophys Acta; 2016 May; 1858(5):971-9. PubMed ID: 26801369 [TBL] [Abstract][Full Text] [Related]
9. Insight into invertebrate defensin mechanism of action: oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. Schmitt P; Wilmes M; Pugnière M; Aumelas A; Bachère E; Sahl HG; Schneider T; Destoumieux-Garzón D J Biol Chem; 2010 Sep; 285(38):29208-16. PubMed ID: 20605792 [TBL] [Abstract][Full Text] [Related]
10. Structural Insights into the Mode of Action of the Peptide Antibiotic Copsin. Franzoi M; van Heuvel Y; Thomann S; Schürch N; Kallio PT; Venier P; Essig A Biochemistry; 2017 Sep; 56(37):4992-5001. PubMed ID: 28825809 [TBL] [Abstract][Full Text] [Related]
11. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria. Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394 [TBL] [Abstract][Full Text] [Related]
12. Controlling bacterial infections by inhibiting proton-dependent processes. Kaneti G; Meir O; Mor A Biochim Biophys Acta; 2016 May; 1858(5):995-1003. PubMed ID: 26522076 [TBL] [Abstract][Full Text] [Related]
13. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205 [TBL] [Abstract][Full Text] [Related]
14. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
15. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
16. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components. Malmsten M Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Batoni G; Maisetta G; Esin S Biochim Biophys Acta; 2016 May; 1858(5):1044-60. PubMed ID: 26525663 [TBL] [Abstract][Full Text] [Related]
18. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Rosenfeld Y; Lev N; Shai Y Biochemistry; 2010 Feb; 49(5):853-61. PubMed ID: 20058937 [TBL] [Abstract][Full Text] [Related]
19. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440 [TBL] [Abstract][Full Text] [Related]
20. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Nuri R; Shprung T; Shai Y Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]