These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26498509)

  • 1. Enhanced stability of Zn2SnO4 with N719, N3 and eosin Y dye molecules for DSSC application.
    Pratim Das P; Roy A; Das S; Devi PS
    Phys Chem Chem Phys; 2016 Jan; 18(3):1429-38. PubMed ID: 26498509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells.
    Hwang D; Jin JS; Lee H; Kim HJ; Chung H; Kim DY; Jang SY; Kim D
    Sci Rep; 2014 Dec; 4():7353. PubMed ID: 25483243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile sonochemical synthesis of Zn
    Ramasamy Raja V; Rosaline DR; Suganthi A; Rajarajan M
    Ultrason Sonochem; 2018 Jun; 44():310-318. PubMed ID: 29680616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT/TDDFT study of the adsorption of N3 and N719 dyes on ZnO(101̅0) surfaces.
    Azpiroz JM; De Angelis F
    J Phys Chem A; 2014 Aug; 118(31):5885-93. PubMed ID: 24720354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Decoration of ZnSnO
    Li Z; Liu K; Sun R; Yang C; Liu X
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO₂ nanoparticles and electrospun TiO₂/SiO₂ nanofibers.
    Wang X; Xi M; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15925-32. PubMed ID: 25162500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating Zn2SnO4 quantum dots and aggregates for enhanced performance in dye-sensitized ZnO solar cells.
    Li Y; Wang Y; Chen C; Pang A; Wei M
    Chemistry; 2012 Sep; 18(37):11716-22. PubMed ID: 22887930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
    Wang W; Zhang H; Wang R; Feng M; Chen Y
    Nanoscale; 2014 Feb; 6(4):2390-6. PubMed ID: 24435106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots.
    Narayanan R; Deepa M; Srivastava AK; Shivaprasad SM
    Chemphyschem; 2014 Apr; 15(6):1106-15. PubMed ID: 24677662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application.
    Abd-Ellah M; Moghimi N; Zhang L; Thomas JP; McGillivray D; Srivastava S; Leung KT
    Nanoscale; 2016 Jan; 8(3):1658-64. PubMed ID: 26690257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles.
    Rahman MM; Im SH; Lee JJ
    Nanoscale; 2016 Mar; 8(11):5884-91. PubMed ID: 26810107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.
    Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun Nanofibers Applied to Dye Solar Sensitive Cells: A Review.
    López-Covarrubias JG; Soto-Muñoz L; Iglesias AL; Villarreal-Gómez LJ
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.
    Yu H; Pan J; Bai Y; Zong X; Li X; Wang L
    Chemistry; 2013 Sep; 19(40):13569-74. PubMed ID: 23939704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-scale interface engineering of metal nanoparticles for plasmon-enhanced dye sensitized solar cells.
    Lou Y; Yuan S; Zhao Y; Hu P; Wang Z; Zhang M; Shi L; Li D
    Dalton Trans; 2013 Apr; 42(15):5330-7. PubMed ID: 23407603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal relaxation in dye sensitized solar cells based on Zn2SnO4 nanostructures.
    Pimachev A; Kolesov G; Chen J; Wang W; Dahnovsky Y
    J Chem Phys; 2012 Dec; 137(24):244704. PubMed ID: 23277949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Open Circuit Voltage of a ZnO-Based Dye-Sensitized Solar Cell by Means of Piezotronic Effect.
    Bettini S; Pagano R; Valli L; Giancane G
    Chem Asian J; 2016 Apr; 11(8):1240-5. PubMed ID: 27061846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitizers for Aqueous-Based Solar Cells.
    Li CT; Lin RY; Lin JT
    Chem Asian J; 2017 Mar; 12(5):486-496. PubMed ID: 28070969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-sensitization promoted light harvesting with a new mixed-addenda polyoxometalate [Cu(C12H8N2)2]2[V2W4O19]·4H2O in dye-sensitized solar cells.
    Xu SS; Chen WL; Wang YH; Li YG; Liu ZJ; Shan CH; Su ZM; Wang EB
    Dalton Trans; 2015 Nov; 44(42):18553-62. PubMed ID: 26443009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.