These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26498628)

  • 1. Effect of Aptamer Binding on the Electron-Transfer Properties of Redox Cofactors.
    Emahi I; Gruenke PR; Baum DA
    J Mol Evol; 2015 Dec; 81(5-6):186-93. PubMed ID: 26498628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavin recognition by an RNA aptamer targeted toward FAD.
    Roychowdhury-Saha M; Lato SM; Shank ED; Burke DH
    Biochemistry; 2002 Feb; 41(8):2492-9. PubMed ID: 11851395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA aptamers that bind flavin and nicotinamide redox cofactors.
    Lauhon CT; Szostak JW
    J Am Chem Soc; 1995 Feb; 117(4):1246-57. PubMed ID: 11539282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology.
    Fruk L; Kuo CH; Torres E; Niemeyer CM
    Angew Chem Int Ed Engl; 2009; 48(9):1550-74. PubMed ID: 19165853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria.
    Giancaspero TA; Locato V; Barile M
    Oxid Med Cell Longev; 2013; 2013():612784. PubMed ID: 24078860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose.
    Burns KD; Pieper PA; Liu HW; Stankovich MT
    Biochemistry; 1996 Jun; 35(24):7879-89. PubMed ID: 8672489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD
    Palmieri F; Monné M; Fiermonte G; Palmieri L
    IUBMB Life; 2022 Jul; 74(7):592-617. PubMed ID: 35304818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic iron-sulfur clusters enhance electron transport when used for wiring the NAD-glucose dehydrogenase based redox system.
    Mahadevan A; Fernando S
    Mikrochim Acta; 2018 Jun; 185(7):337. PubMed ID: 29946767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.
    Stegemann B; Klebe G
    Proteins; 2012 Feb; 80(2):626-48. PubMed ID: 22095739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein.
    Akagawa M; Minematsu K; Shibata T; Kondo T; Ishii T; Uchida K
    Sci Rep; 2016 May; 6():26723. PubMed ID: 27230956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes.
    Wettstein Ch; Möhwald H; Lisdat F
    Bioelectrochemistry; 2012 Dec; 88():97-102. PubMed ID: 22814119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving enzyme-electrode contacts by redox modification of cofactors.
    Riklin A; Katz E; Willner I; Stocker A; Bückmann AF
    Nature; 1995 Aug; 376(6542):672-5. PubMed ID: 7651516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RNA aptamer that shifts the reduction potential of metabolic cofactors.
    Samuelian JS; Gremminger TJ; Song Z; Poudyal RR; Li J; Zhou Y; Staller SA; Carballo JA; Roychowdhury-Saha M; Chen SJ; Burke DH; Heng X; Baum DA
    Nat Chem Biol; 2022 Nov; 18(11):1263-1269. PubMed ID: 36097297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrroloquinoline quinone: a new redox cofactor in eukaryotic enzymes.
    Hartmann C; Klinman JP
    Biofactors; 1988 Jan; 1(1):41-9. PubMed ID: 2855582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
    Hamula CL; Peng H; Wang Z; Newbigging AM; Tyrrell GJ; Li XF; Le XC
    J Mol Evol; 2015 Dec; 81(5-6):194-209. PubMed ID: 26538121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical contacting of flavoenzymes and NAD(P)+-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes.
    Zayats M; Katz E; Willner I
    J Am Chem Soc; 2002 Dec; 124(49):14724-35. PubMed ID: 12465985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.