These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26498694)

  • 1. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection.
    Barreda FA; Nicolas C; Sirven JB; Ouf FX; Lacour JL; Robert E; Benkoula S; Yon J; Miron C; Sublemontier O
    Sci Rep; 2015 Oct; 5():15696. PubMed ID: 26498694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an aerosolized nanoparticle beam beyond the diffraction limit through strong field ionization.
    Davino M; Saule T; Helming NG; Powell JA; Trallero-Herrero C
    Sci Rep; 2022 Jun; 12(1):9277. PubMed ID: 35660781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a mobile fast-screening laser-induced breakdown detection (LIBD) system for field-based measurements of nanometre sized particles in aqueous solutions.
    Latkoczy C; Kägi R; Fierz M; Ritzmann M; Günther D; Boller M
    J Environ Monit; 2010 Jul; 12(7):1422-9. PubMed ID: 20424791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional characterization of tightly focused fields for various polarization incident beams.
    Cai Y; Liang Y; Lei M; Yan S; Wang Z; Yu X; Li M; Dan D; Qian J; Yao B
    Rev Sci Instrum; 2017 Jun; 88(6):063106. PubMed ID: 28667966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing particle size distributions in natural surface waters from 15 nm to 2 microm by a combination of LIBD and single-particle counting.
    Walther C; Büchner S; Filella M; Chanudet V
    J Colloid Interface Sci; 2006 Sep; 301(2):532-7. PubMed ID: 16797578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of aquatic colloids in drinking water during its distribution via a water pipeline network.
    Wagner T; Bundschuhb T; Schick R; Köster R
    Water Sci Technol; 2004; 50(12):27-37. PubMed ID: 15686000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ analysis of metal melts in metallurgic vacuum devices by laser-induced breakdown spectroscopy.
    Gruber J; Heitz J; Arnold N; Bäuerle D; Ramaseder N; Meyer W; Hochörtler J; Koch F
    Appl Spectrosc; 2004 Apr; 58(4):457-62. PubMed ID: 17140495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of microscopic laser beams by 2-D scanning of fluorescence emission.
    Stolpen AH; Brown CS; Golan DE
    Appl Opt; 1988 Nov; 27(21):4414-22. PubMed ID: 20539584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-focusing of tightly focused laser beams.
    Efimov OM
    Appl Opt; 2015 Aug; 54(22):6895-903. PubMed ID: 26368107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating.
    Stanford MG; Lewis BB; Iberi V; Fowlkes JD; Tan S; Livengood R; Rack PD
    Small; 2016 Apr; 12(13):1779-87. PubMed ID: 26864147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.
    Irimia D; Dobrikov D; Kortekaas R; Voet H; van den Ende DA; Groen WA; Janssen MH
    Rev Sci Instrum; 2009 Nov; 80(11):113303. PubMed ID: 19947724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced breakdown detection of temperature-ramp generated aggregates of therapeutic monoclonal antibody.
    Menzen T; Friess W; Niessner R; Haisch C
    Eur J Pharm Biopharm; 2015 Aug; 94():463-7. PubMed ID: 26158409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of single gold nanoparticles using spatial modulation spectroscopy implemented with a galvo-scanning mirror system.
    Devadas MS; Li Z; Major TA; Lo SS; Havard N; Yu K; Johns P; Hartland GV
    Appl Opt; 2013 Nov; 52(32):7806-11. PubMed ID: 24216741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation.
    Setoura K; Okada Y; Hashimoto S
    Phys Chem Chem Phys; 2014 Dec; 16(48):26938-45. PubMed ID: 25377431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and testing of low intensity laser biostimulator.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams.
    Schell S; Wilkens JJ
    Med Phys; 2010 Oct; 37(10):5330-40. PubMed ID: 21089768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Laser induced breakdown spectroscopy for the determination of Cr and Sr in soil].
    Huang JS; Chen QL; Zhao WD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3126-9. PubMed ID: 20102000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental studies on tightly focused vector vortex beams.
    Zhou Z; Tan Q; Jin G
    Appl Opt; 2011 Nov; 50(31):G80-5. PubMed ID: 22086053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A subnanosecond pulsed ion source for micrometer focused ion beams.
    Höhr C; Fischer D; Moshammer R; Dorn A; Ullrich J
    Rev Sci Instrum; 2008 May; 79(5):053102. PubMed ID: 18513056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.