BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26499324)

  • 1. Ecological Risk Assessment of EDTA-Assisted Phytoremediation of Cd Under Different Cultivation Systems.
    Luo J; Qi S; Gu X; Hou T; Lin L
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):259-64. PubMed ID: 26499324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.
    Luo J; Qi S; Gu XW; Wang J; Xie X
    Ecotoxicology; 2016 May; 25(4):646-54. PubMed ID: 26846211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites.
    Luo J; Qi S; Peng L; Wang J
    Int J Phytoremediation; 2016; 18(4):308-14. PubMed ID: 26458117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.
    Luo J; Qi S; Peng L; Xie X
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):321-5. PubMed ID: 25543544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.).
    Kambhampati MS; Vu VT
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):310-3. PubMed ID: 23912229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balance Between Soil Remediation and Economic Benefits of Eucalyptus globulus.
    Xing Y; Wang Z; Zhang C; He W; Luo J
    Bull Environ Contam Toxicol; 2019 Jun; 102(6):887-891. PubMed ID: 30976836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    J Environ Manage; 2017 Dec; 204(Pt 1):17-22. PubMed ID: 28846891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks.
    Luo J; Cai L; Qi S; Wu J; Gu XWS
    Chemosphere; 2017 Oct; 185():386-393. PubMed ID: 28709043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of endophytic Bacillus pumilus and EDTA on the phytoextraction of Cu from soil by using Cicer arietinum.
    Ali B; Amna ; Javed MT; Ali H; Munis MF; Chaudhary HJ
    Int J Phytoremediation; 2017 Jan; 19(1):14-22. PubMed ID: 27869502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants.
    Eissa MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):10247-54. PubMed ID: 26884237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation of DTPA and EDTA with Cd
    Karak T; Paul RK; Das DK; Boruah RK
    Environ Monit Assess; 2016 Dec; 188(12):670. PubMed ID: 27848112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    Ecotoxicol Environ Saf; 2018 Mar; 149():241-247. PubMed ID: 29241117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.
    Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Extraction of Cd by ramie from soils as affected by applications of chelators and peat].
    Shen LP; Zong LG; Jiang P; Liu WX; Jiang B; Chen YH
    Huan Jing Ke Xue; 2009 Sep; 30(9):2767-72. PubMed ID: 19927838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of EDTA and Tannic Acid on the Removal of Cd, Ni, Pb and Cu from Artificially Contaminated Soil by Althaea rosea Cavan.
    Cay S; Uyanik A; Engin MS; Kutbay HG
    Int J Phytoremediation; 2015; 17(1-6):568-74. PubMed ID: 25747244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EDTA-assisted leaching of Pb and Cd from contaminated soil.
    Qiao J; Sun H; Luo X; Zhang W; Mathews S; Yin X
    Chemosphere; 2017 Jan; 167():422-428. PubMed ID: 27750165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution characteristics of Cd in different types of leaves of Festuca arundinacea intercropped with Cicer arietinum L.: A new strategy to remove pollutants by harvesting senescent and dead leaves.
    Luo J; He W; Rinklebe J; Igalavithana AD; Tack FMG; Ok YS
    Environ Res; 2019 Dec; 179(Pt A):108801. PubMed ID: 31606617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium.
    Wong JW; Wong WW; Wei Z; Jagadeesan H
    Sci Total Environ; 2004 May; 324(1-3):235-46. PubMed ID: 15081709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of
    Saffari VR; Saffari M
    Int J Phytoremediation; 2020; 22(11):1204-1214. PubMed ID: 32329354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Phytoextraction of Lead from Artificially Contaminated Soil by Mirabilis jalapa with Chelating Agents.
    Yan L; Li C; Zhang J; Moodley O; Liu S; Lan C; Gao Q; Zhang W
    Bull Environ Contam Toxicol; 2017 Aug; 99(2):208-212. PubMed ID: 28646396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.