BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26499332)

  • 21. Orthogonal analysis of functional gold nanoparticles for biomedical applications.
    Tsai DH; Lu YF; DelRio FW; Cho TJ; Guha S; Zachariah MR; Zhang F; Allen A; Hackley VA
    Anal Bioanal Chem; 2015 Nov; 407(28):8411-22. PubMed ID: 26362156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles.
    Cho WS; Kim S; Han BS; Son WC; Jeong J
    Toxicol Lett; 2009 Dec; 191(1):96-102. PubMed ID: 19695318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicological profile of small airway epithelial cells exposed to gold nanoparticles.
    Ng CT; Li JJ; Gurung RL; Hande MP; Ong CN; Bay BH; Yung LY
    Exp Biol Med (Maywood); 2013 Dec; 238(12):1355-61. PubMed ID: 24157586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Grape-seed procyanidins inhibit the in vitro growth and invasion of pancreatic carcinoma cells.
    Chung YC; Huang CC; Chen CH; Chiang HC; Chen KB; Chen YJ; Liu CL; Chuang LT; Liu M; Hsu CP
    Pancreas; 2012 Apr; 41(3):447-54. PubMed ID: 22015975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A proteomic approach to investigate AuNPs effects in Balb/3T3 cells.
    Gioria S; Chassaigne H; Carpi D; Parracino A; Meschini S; Barboro P; Rossi F
    Toxicol Lett; 2014 Jul; 228(2):111-26. PubMed ID: 24780912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of gold nanoparticles with different sizes on polymerase chain reaction efficiency.
    Wan W; Yeow JT
    Nanotechnology; 2009 Aug; 20(32):325702. PubMed ID: 19620768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells.
    Liu X; Huang N; Li H; Jin Q; Ji J
    Langmuir; 2013 Jul; 29(29):9138-48. PubMed ID: 23815604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines.
    Chueh PJ; Liang RY; Lee YH; Zeng ZM; Chuang SM
    J Hazard Mater; 2014 Jan; 264():303-12. PubMed ID: 24316248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity.
    Hashimoto M; Sasaki JI; Yamaguchi S; Kawai K; Kawakami H; Iwasaki Y; Imazato S
    J Dent Res; 2015 Aug; 94(8):1085-91. PubMed ID: 26040283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents.
    Chen G; Xu S; Renko K; Derwahl M
    J Clin Endocrinol Metab; 2012 Apr; 97(4):E510-20. PubMed ID: 22278418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2-methoxyestradiol induces apoptosis in cultured human anaplastic thyroid carcinoma cells.
    Roswall P; Bu S; Rubin K; Landström M; Heldin NE
    Thyroid; 2006 Feb; 16(2):143-50. PubMed ID: 16676399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells).
    Kumar CS; Raja MD; Sundar DS; Gover Antoniraj M; Ruckmani K
    Carbohydr Polym; 2015 Sep; 128():63-74. PubMed ID: 26005140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma.
    Ruan S; He Q; Gao H
    Nanoscale; 2015 Jun; 7(21):9487-96. PubMed ID: 25909483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antisurvivin oligonucleotides inhibit growth and induce apoptosis in human medullary thyroid carcinoma cells.
    Du ZX; Zhang HY; Gao DX; Wang HQ; Li YJ; Liu GL
    Exp Mol Med; 2006 Jun; 38(3):230-40. PubMed ID: 16819281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition effects of gold nanoparticles on proliferation and migration in hepatic carcinoma-conditioned HUVECs.
    Pan Y; Wu Q; Liu R; Shao M; Pi J; Zhao X; Qin L
    Bioorg Med Chem Lett; 2014 Jan; 24(2):679-84. PubMed ID: 24365157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy.
    Mukherjee S; Sushma V; Patra S; Barui AK; Bhadra MP; Sreedhar B; Patra CR
    Nanotechnology; 2012 Nov; 23(45):455103. PubMed ID: 23064012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppressive effects of microRNA-16 on the proliferation, invasion and metastasis of hepatocellular carcinoma cells.
    Wu WL; Wang WY; Yao WQ; Li GD
    Int J Mol Med; 2015 Dec; 36(6):1713-9. PubMed ID: 26499886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clathrin-mediated endocytosis of gold nanoparticles in vitro.
    Ng CT; Tang FM; Li JJ; Ong C; Yung LL; Bay BH
    Anat Rec (Hoboken); 2015 Feb; 298(2):418-27. PubMed ID: 25243822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines.
    Parnsamut C; Brimson S
    Genet Mol Res; 2015 Apr; 14(2):3650-68. PubMed ID: 25966134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pea3 expression promotes the invasive and metastatic potential of colorectal carcinoma.
    Mesci A; Taeb S; Huang X; Jairath R; Sivaloganathan D; Liu SK
    World J Gastroenterol; 2014 Dec; 20(46):17376-87. PubMed ID: 25516649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.