These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 26499748)

  • 1. Panoscopically optimized thermoelectric performance of a half-Heusler/full-Heusler based in situ bulk composite Zr(0.7)Hf(0.3)Ni(1+x)Sn: an energy and time efficient way.
    Bhardwaj A; Chauhan NS; Sancheti B; Pandey GN; Senguttuvan TD; Misra DK
    Phys Chem Chem Phys; 2015 Nov; 17(44):30090-101. PubMed ID: 26499748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional Tailoring for Realizing High Thermoelectric Performance in Hafnium-Free n-Type ZrNiSn Half-Heusler Alloys.
    Chauhan NS; Bathula S; Gahtori B; Mahanti SD; Bhattacharya A; Vishwakarma A; Bhardwaj R; Singh VN; Dhar A
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47830-47836. PubMed ID: 31441632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure of Zr-Ni-Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits.
    Do DT; Mahanti SD; Pulikkoti JJ
    J Phys Condens Matter; 2014 Jul; 26(27):275501. PubMed ID: 24925669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance.
    Johari KK; Sharma DK; Verma AK; Bhardwaj R; Chauhan NS; Kumar S; Singh MN; Bathula S; Gahtori B
    ACS Appl Mater Interfaces; 2022 May; 14(17):19579-19593. PubMed ID: 35442621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi(1+x)Sn.
    Birkel CS; Douglas JE; Lettiere BR; Seward G; Verma N; Zhang Y; Pollock TM; Seshadri R; Stucky GD
    Phys Chem Chem Phys; 2013 May; 15(18):6990-7. PubMed ID: 23552642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials.
    Xie H; Wang H; Fu C; Liu Y; Snyder GJ; Zhao X; Zhu T
    Sci Rep; 2014 Nov; 4():6888. PubMed ID: 25363573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys.
    Makongo JP; Misra DK; Zhou X; Pant A; Shabetai MR; Su X; Uher C; Stokes KL; Poudeu PF
    J Am Chem Soc; 2011 Nov; 133(46):18843-52. PubMed ID: 21970624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation.
    Rausch E; Balke B; Ouardi S; Felser C
    Phys Chem Chem Phys; 2014 Dec; 16(46):25258-62. PubMed ID: 25162747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of Band Convergence in p-Type TiCoSb Half-Heusler Alloys Significantly Enhances the Thermoelectric Performance.
    Verma AK; Johari KK; Dubey P; Sharma DK; Kumar S; Dhakate SR; Candolfi C; Lenoir B; Gahtori B
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):942-952. PubMed ID: 36542089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials.
    Li S; Zhu H; Mao J; Feng Z; Li X; Chen C; Cao F; Liu X; Singh DJ; Ren Z; Zhang Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41321-41329. PubMed ID: 31609575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Half-Heusler Interfacial Structure on Thermal Transport Properties of (Ti, Zr)NiSn Alloys.
    Sato M; Chai YW; Kimura Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25503-25512. PubMed ID: 34009948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Thermoelectric Performance of Zr
    Yang X; Jiang Z; Kang H; Chen Z; Guo E; Liu D; Yang F; Li R; Jiang X; Wang T
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3773-3783. PubMed ID: 31880427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and phonon transport in Sb-doped Ti(0.1)Zr(0.9)Ni(1+x)Sn(0.975)Sb(0.025) nanocomposites.
    Liu Y; Page A; Sahoo P; Chi H; Uher C; Poudeu PF
    Dalton Trans; 2014 Jun; 43(21):8094-101. PubMed ID: 24722627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ti Addition Effect on the Grain Structure Evolution and Thermoelectric Transport Properties of Hf
    Cho J; Park T; Bae KW; Kim HS; Choi SM; Kim SI; Kim SW
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuously Enhanced Structural Disorder To Suppress the Lattice Thermal Conductivity of ZrNiSn-Based Half-Heusler Alloys by Multielement and Multisite Alloying with Very Low Hf Content.
    Gong B; Li Y; Liu F; Zhu J; Wang X; Ao W; Zhang C; Li J; Xie H; Zhu T
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13397-13404. PubMed ID: 30883083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Thermoelectric Properties through Control of Nickel Interstitials and Phase Separation in Heusler/Half-Heusler TiNi
    Levin EE; Long F; Douglas JE; Buffon MLC; Lamontagne LK; Pollock TM; Seshadri R
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29843364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys.
    Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.
    Hu T; Yang D; Su X; Yan Y; You Y; Liu W; Uher C; Tang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):864-872. PubMed ID: 29236464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide Contraction as a Design Factor for High-Performance Half-Heusler Thermoelectric Materials.
    Liu Y; Fu C; Xia K; Yu J; Zhao X; Pan H; Felser C; Zhu T
    Adv Mater; 2018 Aug; 30(32):e1800881. PubMed ID: 29939427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.