These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
994 related articles for article (PubMed ID: 26499887)
1. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. Xu HM; Kong XD; Chen F; Huang JX; Lou XY; Zhao JY BMC Genomics; 2015 Oct; 16():858. PubMed ID: 26499887 [TBL] [Abstract][Full Text] [Related]
2. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye J; Yang Y; Chen B; Shi J; Luo M; Zhan J; Wang X; Liu G; Wang H BMC Genomics; 2017 Jan; 18(1):71. PubMed ID: 28077071 [TBL] [Abstract][Full Text] [Related]
3. Screening of Candidate Leaf Morphology Genes by Integration of QTL Mapping and RNA Sequencing Technologies in Oilseed Rape (Brassica napus L.). Jian H; Yang B; Zhang A; Zhang L; Xu X; Li J; Liu L PLoS One; 2017; 12(1):e0169641. PubMed ID: 28068426 [TBL] [Abstract][Full Text] [Related]
4. RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight. Geng X; Dong N; Wang Y; Li G; Wang L; Guo X; Li J; Wen Z; Wei W PLoS One; 2018; 13(1):e0191297. PubMed ID: 29381708 [TBL] [Abstract][Full Text] [Related]
5. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
6. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439 [TBL] [Abstract][Full Text] [Related]
7. QTL Mapping and Diurnal Transcriptome Analysis Identify Candidate Genes Regulating Song J; Li B; Cui Y; Zhuo C; Gu Y; Hu K; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299178 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
9. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. Jian H; Zhang A; Ma J; Wang T; Yang B; Shuang LS; Liu M; Li J; Xu X; Paterson AH; Liu L BMC Genomics; 2019 Jan; 20(1):21. PubMed ID: 30626329 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
11. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
12. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721 [TBL] [Abstract][Full Text] [Related]
13. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661 [TBL] [Abstract][Full Text] [Related]
14. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Shah S; Weinholdt C; Jedrusik N; Molina C; Zou J; Große I; Schiessl S; Jung C; Emrani N Plant Cell Environ; 2018 Aug; 41(8):1935-1947. PubMed ID: 29813173 [TBL] [Abstract][Full Text] [Related]
15. Combined BSA-Seq Based Mapping and RNA-Seq Profiling Reveal Candidate Genes Associated with Plant Architecture in Ye S; Yan L; Ma X; Chen Y; Wu L; Ma T; Zhao L; Yi B; Ma C; Tu J; Shen J; Fu T; Wen J Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269615 [TBL] [Abstract][Full Text] [Related]
16. Combined QTL mapping, physiological and transcriptomic analyses to identify candidate genes involved in Brassica napus seed aging. Wang T; Hou L; Jian H; Di F; Li J; Liu L Mol Genet Genomics; 2018 Dec; 293(6):1421-1435. PubMed ID: 29974306 [TBL] [Abstract][Full Text] [Related]
17. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. Shi T; Li R; Zhao Z; Ding G; Long Y; Meng J; Xu F; Shi L PLoS One; 2013; 8(1):e54559. PubMed ID: 23382913 [TBL] [Abstract][Full Text] [Related]
18. Fine mapping of the major QTL for seed coat color in Brassica rapa var. Yellow Sarson by use of NIL populations and transcriptome sequencing for identification of the candidate genes. Zhao H; Basu U; Kebede B; Qu C; Li J; Rahman H PLoS One; 2019; 14(2):e0209982. PubMed ID: 30716096 [TBL] [Abstract][Full Text] [Related]
19. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). Zhou H; Xiao X; Asjad A; Han D; Zheng W; Xiao G; Huang Y; Zhou Q BMC Plant Biol; 2022 Mar; 22(1):130. PubMed ID: 35313826 [TBL] [Abstract][Full Text] [Related]
20. Mining Candidate Genes for Leaf Angle in Peng A; Li S; Wang Y; Cheng F; Chen J; Zheng X; Xiong J; Ding G; Zhang B; Zhai W; Song L; Wei W; Chen L Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]